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Cherenkov radiation
● Water Cherenkov Detector a la SK 
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390 photons per 1 cm
(300 nm < λ < 700 nm)

Threshold p:  muon 121    MeV/c
pion 160   MeV/c
proton    1070  MeV/c



Time of photon generation ti for a photon
detected by PMT I at time t 0i

Vertex fit (I) : Point-fit
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Good for a point source such as electron ring
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Ring edge/ring direction
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Vertex fit (II) : TDC-fit - track length and scattered light effect included
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Ring count

Hough transform
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Ring count

L1-L2 L1-L2

Sub-GeV : Evis<1.33 GeV, Multi-GeV: Evis>1.33 GeV



Ring fitter example )( 00 γγππ →→ +ep
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Particle ID

How do we detect muon and electron neutrinos ?

electron-like ring

muon-like ring

νµ

+ n -> p +

µ−

νe

+ n -> p +

e-

Major interactions:

Most of time invisible



Particle ID
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Particle ID (µ-like vs. e-like)



Vertex fit (III) : MS-fit – Timing and charge info used for a single ring event

A vertex shift along a track changes the
TOF of each hit by almost equal amount

Bad vertex resolution along the track

Ring pattern (charge distribution) gives 
additional handle to improve vertex
resolution along the track



Vertex fit (III) : MS-fit – Timing and charge info used for a single ring event



Momentum measurement

pe vs. momentum momentum resolutions



Angular resolutions



π0 finder : Motivation and strategy 

π0 reconstruction efficiency with standard SK software 

POLfit (Pattern Of Light fit)

true opening angle (deg)
ef

fic
ie

nc
y

All single π0 interactions
SK atm. neutrino spectra

Always looks for an extra ring in a
single e-like ring event
Observed light pattern is compared
with templates
Scattered light due to processes such
as Mie scattering taken into account
Outputs: Likelihoods in addition to
information of the extra-photon are
provided

inefficiency
due to overlap

inefficiency due to
weak 2nd ring

Inefficiency due to overlap
Inefficiency due to a week 2nd ring
Inefficiency in between

Needs a smart algorithm to increase efficiency



π0 finder: Performance 

Measured opening angle vs.  π0 mass using π0 finder
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Single e-like events from single π0 NC int.



π0 finder: “Efficiency” 

π0 “reconstruction efficiency” with standard SK + π0 finder 
ef

fic
ie

nc
y

All NC single π0 int.

True opening angle (deg)

π0 mass cut:1- and 2-ring events

π0 mass cut:2-ring events

With atmospheric neutrino spectra

with π0 finder

without π0 finder 

with π0 finder
w/o π0 finder



ντ event identification (I) A τ event at SK (simulation)



ντ event identification (II)
In addition to traditional SK variables, new variables such as
sphericity and aplanarity that describe topology of events are
also used to define a likelihood to distinguish τ events from others



ντ event identification (III)



ντ event identification(VI) After some cuts plus a cut on likelihood

up-going up-goingdown-going down-going

Excess of events i.e.
τ appearance



Setting the stage 

νµ→ νe and νe +N → e + invisible N' + (invisible n π±s, n≥0)  

νµ,τ,e + N → νµ,τ,e + N' + π0 + (invisible n π±s, n≥0)

Look for single electron events

Major background

νe contamination in beam (typically 0.7%)

γ (γ)

How do we find the signal for νµ→ ve

~ a half megaton F.V. water Cherenkov detector, for example UNO
at 2,540 (BNL-HS) km and 1,480 km (Fermilab-Henderson) from the
beam source
BNL very long baseline wide band neutrino beam 
VLB neutrino oscillation experiment

See, for example, PRD68 (2003) 12002 by BNL group for physics argument.
But it is based on 4-vector level MC and on very optimistic assumptions 

● Very Long Baseline Neutrino Oscillation Experiment

νµ→ νe



Neutrino spectra of on- and off-axis BNL Superbeams

on-axis beam

1 o off-axis beam

Neutrino energy (GeV)
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PRD68 (2003) 12002; private communication w/ M.Diwan



How is analysis done ?
Use of SK atmospheric neutrino MC

Flatten SK atm. ν spectra and  reweight with BNL beam spectra 
Normalize with QE events: 12,000 events for νµ , 84 events for beam
νe for 0.5 Mt F.V. with 5 years of running, 2,540 (1,480) km baseline 

Reweight with oscillation probabilities for νµ and for νe

Standard SK analysis package +

∆m2
21 =7.3 x 10- 5 eV2, ∆m2

31=2.5 x 10- 3eV2

sin22θij(12,23,13)=0.86/1.0/0.04, δCP=0,+45,+135,-45,-135o

Probability tables from Brett Viren of BNL

Oscillation parameters used:

distance from BNL to Homestake
(distance from Fermilab to Henderson)

special π0 finder  

2500 kt MW 107 sec
BNL 30 GeV AGS



Selection criteria used to improve

Likelihood analysis using the following 9 variables:

Initial cuts:
One and only one electron-like ring with energy and reconstructed
neutrino energy more than 100 MeV without any decay electron

π0 mass (pi0mass)
energy fraction (efrac)
costh
π0-likelihood (pi0-like)
e-likelihood (e-like)

∆ log π0-likelihood (∆log pi0like)
single ring-ness (dlfct)
total charge/electron energy (poa)
Cherenkov angle (ange)

To reduce events with invisible
charged pions

Traditional SK cuts only

With π0 finder

eeN

eNrec

Em
EmE

)cos1( θν −−
=
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QE events only
before likelihood cut

All CC events (=signal)
before likelihood cut

Erec/

Reconstructed and true energy Reconstructed and true energy

Eν Eν
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All CC events that survive the initial cuts are signals

How well can we measure neutrino energy ?
From now on only single e-like events after initial cuts will be used
Oscillation effect on with CPV+45o at 2,540 km

Erec/ Eν Eν
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• Useful Variables to form likelihood function
All the distributions of useful variables are obtained with
neutrino oscillation “on” with CPV phase angle +450

π0 mass

π0 massπ0 mass π0 mass
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Primary electron ring

An undetected weak
ring initially

-One algorithm optimized to find an extra ring near the primary ring (forward region)

- Another algorithm optimized to find an extra ring in wider space (wide region)
- See the difference log π0-likelihood (forward) - log π0- likelihood (wide)

Difference between log of two π0-likelihoods (wide vs. forward) from POLfit

This algorithm practically gives likelihood how likely the event is single e-like
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Variable
removed Signal Bkg Signal Bkg π0Effic

None νe CC νµ all, νe,ντ NC 280 87
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● Effectiveness of variables

νe CC

νe CC

νe CC 40%
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pi0mass

costh 279 101 49

)(/ 0πBS

3.22

2.75

2.98

2.95

2.96

2.85

2.66

2.76

Neutrino oscillation was on to define template 
distributions. For analysis  with CPV=+45o

νµ all, νe,ντ NC 

νµ all, νe,ντ NC 

νµ all, νe,ντ NC 

νµ all, νe,ντ NC 

νµ all, νe,ντ NC 

νµ all, νe,ντ NC 

νµ all, νe,ντ NC 

νµ all, νe,ντ NC ange νe CC 40% 280 98 49 2.86

νµ all, νe,ντ NC dlfct νe CC 40% 277 95 49 2.93

BNL-Homestake (2540 km)
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• Granularity and π0 efficiency for same PMT coverage

Expected improvement with UNO?
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y For smaller π0 opening angle finer
granularity is needed.

Compared with a smaller detector

Minimum distance to wall in π0 direction (m)

π0 opening angle 0-20o

more granularity
pixels

π0 efficiency improves when min.
distance increases (up to 20%)

See the power of the π0 finder

with π0 finder

without π0 finder

What PMT coverage needed?
10,20,40% (SK-I has 40% coverage)



● Conclusions
Realistic MC simulation studies have been performed for the BNL
very long baseline scenario with a water Cherenkov detector. It was
found that BNL wideband νµ beam combined with a UNO type detector
DO A GREAT JOB whether the baseline is 2,540 km or 1,480 km.
– Very exciting news !  But always do proper MC simulations! 
It was demonstrated that there is room to greatly improve S/B ratio
beyond the standard water Cherenkov detector reconstruction codes
even with currently available codes.

We may need further improvement of algorithm/software, which 
is quite doable.

A larger detector such as UNO has an advantage over a smaller
detector such as SK (we learned a lesson from 1kt at K2K): 
Both PMT coverage AND granularity are important

Detailed studies on sensitivity on oscillation parameters needed
with different neutrino spectrum to optimize the beam spectrum.

In collaboration with BNL and Fermilab, proper simulations of a 
next generation water Cherenkov detector, its optimized design
with reasonable νµ beam will produce sweet fruits for exciting physics   


	Water Cherenkov DetectorandNeutrino Oscillation ExperimentsUsing nm            ne

