T2KK Project & Likelihood study

Fanny Dufour, Ed Kearns, Boston University

Fermilab Workshop, September 16, 2006

Outline

T2KK project

- Where?
- What kind of beam
- 2 detectors complex
- Spectrum (each off-axis angle)
- χ² analysis
- Sensitivity curves

Likelihood analysis:

- Analysis strategy
- Likelihood variables
- Efficiency results
- Future plans

This work was developed for

2nd Int'l Workshop on far detector in Korea for the J-Parc neutrino beam http://t2kk.snu.ac.kr

Working group: T.Kajita, E.Kearns, A. Meregaglia, S. Nakayama, K.Okumura, A.Rubbia, H Minakata et al.

Connection to FNAL -DUSEL study

- Compare the likelihood efficiency Done
- Use 28GeV, 1MW flux and check In progress sensitivity results with our tools

Oscillation probability

 \rightarrow Very dynamic in Korea

Ishitsuka et al. PRD72, 033003 (2005)

T2KK (T2K to Korea)

Detecting neutrinos from T2K in Korea \rightarrow T2KK

Flux for several off-axis angle

Small off-axis angle: (high energy tail)✓1st appearance peak

x more NC background

Big off-axis angle: (narrow peak)

Low background
 Low statistics at high E
 Only 2nd appearance peak[®]

Fanny Dufour, Boston University

Oscillation analysis

Background spectrum

Spectrum for each OA

09/16/06

χ^2 Definition

The oscillation analysis was done for: 4MW beam

k=1,4 0.27Mton in Korea 4 years running of neutrino 4 years running of antineutrino 6 years running of antineutrino With the following energy bins (MeV): i=1,7 400-500, 500-600, 600-700, 700-800, 800-1200,1200-2000, 2000-3000 $\chi^2 = \sum_{i=1}^{4} \left(\sum_{i=1}^{7} \frac{\left(N(e)_i^{\text{obs}} - N(e)_i^{\text{exp}} \right)^2}{\sigma_i^2} \right) + \sum_{i=1}^{3} \left(\frac{\epsilon_j}{\tilde{\sigma}_i} \right)^2$ $N(e)_i^{\text{exp}} = N_i^{\text{BG}} \cdot \left(1 + \sum_{j=1}^2 f_j^i \cdot \epsilon_j\right) + N_i^{\text{signal}} \cdot \left(1 + f_3^i \cdot \epsilon_3\right) \quad .$ hep-ph 0604026 eq 3) and 4)

Sensitivity to mass hierarchy

Fanny Dufour, Boston University

Sensitivity to CP violation

In general there is not much difference between different off-axis angle

In the case where θ_{13} is very small then 1.0° OA is the best of the 2 detector setup (ie Kamioka+ Korea), but Kamioka only would be slightly better.

T2KK FNAL comparison

09/16/06

Fanny Dufour, Boston University

Likelihood study

Likelihood analysis strategy

Based on the T2K v_{a} appearance analysis

- Apply following precuts: FCFV, Evis >100 MeV Single ring e-like no decay electron
- In this study, I used the T2K Monte Carlo.
- Combine Super-K variables into a likelihood to discriminate electrons from π^0 .

8 Variables

Cosθ

Beam related variable:

Special π° fitter variables: (POLfit, Pattern Of Light)

Standard SK variables:

Ring parameter PID parameter π° likelihood Energy fraction of 2nd ring

New variables, defined for this analysis:

Chi_Xalong Chi_cos(open)

 π° mass

\mathbf{Cos}_{ve}

Ring and PID Parameter:

Those variables are not only precuts, (keep single-ring, e-like)

we also use the variables themselves in the likelihood.

MC
CCQE
SK data

Ring counting parameter

ring parameter (dlfct) 0.15 0.15 0.1 0.1 0.05 0.05 0 0 -30 -20 -10 10 **-**30 -20 -10 10 0 0 100-350 MeV 350-850 MeV 0.15 0.15 0.1 0.1 0.05 0.05 0 0 -30 -20 -10 -30 -20 -10 10 10 0 0 850-1500 MeV 1500-2000 MeV 0.15 0.15 0.1 0.1 0.05 0.05 0 0 -20 **-**30 -20 -10 -30 -10 10 0 10 0 2000-3000 MeV 3000-4000 MeV 0.15 0.15 0.1 0.1 0.05 0.05 0 0 -30 -20 -30 -20 -10 10 -10 10 0 0 4000-5000 MeV 5000- MeV

09/16/06

Fanny Dufour, Boston University

Background

Signal

PID parameter

Fanny Dufour, Boston University

Background

Signal

POLfit

S.Nakayama's talk 1st T2KK Workshop November 2005

I use : π° mass $\pi^{\circ} \Delta Likelihood$ Energy fraction of 2nd ring

- Target: FCFV 1R-elike events
- ▲L≡Likelihood(2γ assump.) Likelihood(electron assump.)
- Try to reconstruct two γ rings
- Input: vertex, visible energy, and the $1^{st} \gamma$ direction by the standard fitter
- Compare observed & expected (direct+scatter) charge
- Vary the 2nd γ direction and the energy fraction until the best match found

POLfit variables – π° mass

POLfit variables – π° Likelihood:

09/16/06

POLfit variables – Energy fraction

09/16/06

Fanny Dufour, Boston University

Signal

Xalong & Cos(open)

Xalong: Distance between vertex and emitting point of Cherenkov light.

Cos(open): Angle between vertex-pmt vector & direction of particle

- I compute those values for each hit pmt, plot distributions.
- Using part of the MC I create templates of those distributions.
- For each event, I assign a χ^2 value comparing the event against the templates.
- The χ^2 value is added to the likelihood.

Xalong

09/16/06

Cos (open)

Final likelihood

Background Signal

09/16/06

Final efficiency

Precuts efficiency:

E true	, (GeV)	0-0.35	0.35-0.85	0.85-1.5	1.5-2.0	2.0-3.0
v _µ CC	Precuts eff:	nan	0.5%	0.6%	0.8%	0.9%
NC	Precuts eff:	20%	26%	26%	22%	18%
V _e	Precuts eff:	94%	80%	61%	46%	36%

Likelihood efficiency:

E	E _{rec} (GeV)	0-0.35	0.35-0.85	0.85-1.5	1.5-2.0	2.0-3.0
v C	C Likelihood eff:	10.4%	25.2%	25.6%	11.1%	14.6%
NC	Likelihood eff:	10.9%	22.1%	23.4%	24.6%	34.9%
V _e	Likelihood eff:	87.1%	80.8%	78.6%	72.6%	73.2%

Comparison with Chiaki's efficiency

Fanny Dufour, Boston University

Likelihood future

There is room for improvement:

- Study new variables
- Use different set of variables for different energies
- Test Neural Network analysis
- Compare with SK atmospheric data
 → Check how well the variables are
 reproduced by MC.

Conclusions

Likelihood analysis:

Likelihood efficiency ranges from: 87.1% to 73.2% for signal 10.9% to 34.9 % for NC background My likelihood results are in good agreement with Chiaki's at low energies.

Oscillation analysis conclusions:

For mass hierarchy study: Best set up is when OA is small (= 1.0°)

For CP violation study: Not many differences for different OA angles unless θ_{13} is very small and in that case 1.0° OA is the best of 2 detector setup, but Kamioka only would be slightly better.

Backups:

Final likelihood efficiency

E _{rec} (0	GeV)	0-0.35	0.35-0.85	0.85-1.5	1.5-2.0	2.0-3.0
ν _μ CC	precuts	154.0	107.0	39.0	27.0	48.0
	likelihood	16.0	27.0	10.0	3.0	7.0
	efficiency	10.4%	25.2%	25.6%	11.1%	14.6%
NC	precuts	798.0	913.0	410.0	191.0	186.0
	likelihood	87.0	202.0	96.0	47.0	65.0
	efficiency	10.9%	22.1%	23.4%	24.6%	34.9%
V _e	precuts	712.0	2855.0	2192.0	1088.0	1691.0
	likelihood	620.0	2307.0	1723.0	790.0	1238.0
	efficiency	87.1%	80.8%	78.6%	72.6%	73.2%
				N ra	IB: aw number	of events

Final efficiency

E	, (GeV) 0	-0.35	0.35-0.85	0.85-1.5	1.5-2.0	2.0-3.0
v _µ CC	fcfv	14.0	36839.0	10843.0	3261.0	4629.0
	1ring	12.0	34040.0	8386.0	1867.0	2098.0
	e-like	0.0	509.0	96.0	62.0	82.0
	nodecay-e	0.0	204.0	72.0	27.0	40.0
	Precuts eff	. 0	0.5%	0.6%	0.8%	0.9%
NC	fcfv	10.0	2390.0	1536.0	895.0	1892.0
	1ring	2.0	733.0	528.0	311.0	591.0
	e-like	2.0	646.0	419.0	221.0	414.0
	nodecay-e	2.0	644.0	398.0	196.0	357.0
	Precuts eff	20%	26%	26%	22%	18%
v _e	fcfv	279.0	3051.0	3941.0	2177.0	4939.0
	1ring	264.0	2693.0	2829.0	1234.0	2268.0
	e-like	262.0	2661.0	2807.0	1224.0	2258.0
	nodecay-e	262.0	2471.0	2430.0	1002.0	1857.0
	Precuts eff	94%	80%	61%	46%	36%
۲	<mark>rec</mark> (GeV)	<mark>0-0.35</mark>	0.35-0.85	0.85-1.5	1.5-2.0	2.0-3.0
۳ CC	Likelihood effi	10.4%	25.2%	25.6%	11.1%	14.6%
NC	Likelihood eff	10.9%	22.1%	23.4%	24.6%	34.9%
۷ e	Likelihood eff	87.1%	80.8%	78.6%	72.6%	73.2%

09/16/06

Slide taken from T. Kajita, NOW 2006

hep-ph/0504026

Final efficiency (2.0-10.0 Gev)

arbitrary numbers

NB:

E _{rec} (C	GeV)	2.0-3.0	3.0-4.0	4.0-5.0	5.0-
ν _μ CC	fcfv	4547.0	2910.0	1751.0	1673.0
	1ring	1703.0	1308.0	971.0	1099.0
	e-like	91.0	83.0	48.0	76.0
	nodecay-e	48.0	40.0	17.0	36.0
	likelihood	7.0	8.0	9.0	8.0
	efficiency	14.6%	20.0%	52.9%	22.2%
NC	fcfv	499.0	215.0	86.0	65.0
	1ring	237.0	128.0	60.0	46.0
	e-like	230.0	124.0	59.0	46.0
	nodecay-e	186.0	98.0	43.0	37.0
	likelihood	65.0	41.0	15.0	19.0
	efficiency	34.9%	41.8%	34.9%	51.4%
V _e	fcfv	4098.0	2132.0	1027.0	935.0
	1ring	2022.0	1156.0	578.0	609.0
	e-like	2013.0	1153.0	576.0	603.0
	nodecay-e	1691.0	970.0	446.0	466.0
	likelihood	1238.0	675.0	351.0	390.0
	efficiency	73.2%	69.6%	78.7%	83.7%

09/16/06

38/32

T2KK FNAL comparison

T2KK FNAL comparison

Conclusions

Likelihood analysis developed for v_a appearance:

 $\epsilon = 82\% / BG = 21\%$ $\epsilon = 72\% / BG = 34\%$

Oscillation analysis conclusions:

For mass hierarchy study: Best set up is when OA is small (= 1.0°) 1st osc maximum matter effect

For CP violation study: Not many difference for different OA angle unless θ_{13} is very small and in that case 1.0° OA is the best of 2 detector setup, but Kamioka only would be slightly better.