Update on e/ $\boldsymbol{\pi}^{\boldsymbol{0}}$ Likelihood

Fanny Dufour, May 22 ${ }^{\text {nd }} 2006$

Outline

- Reminder of Nakayama's variables
- Adding Chiaki's variables
- energy fraction
- Tot pe charge/evis
- Comparing efficiencies

Nakayama's variable

Ring couting parameter
PID parameter
cosnue
pi0mass (polfit)
pi0 Likelihood (polfit)

Compare efficiency (Nakayama-Fanny)

We try to improve the high energy range

Nakayama-san				Fanny (same 5 variables)		
Erec(GeV)	Signal	Bckg $(v \mu \mathrm{CC})$	Bckg(NC)	Signal	Bckg $(v \mu \mathrm{CC})$	Bckg(NC)
$0 \sim 0.35$	90.8%	25.9%	12.2%	92.2%	$37.3 \%!!$	14.5%
$0.35 \sim 0.85$	83.3%	39.5%	25.5%	84.3%	43.3%	26.5%
$0.85 \sim 1.5$	78.2%	25.2%	27.5%	79.1%	31.2%	27.7%
$1.5 \sim$	58.9%	22.5%	39.5%	64.8%	20.7%	37.8%

Notes: -fixed the bug I had in Mozumi (was due to bad decay electron cut) - need to understand the low E behavior (for the background rejection)

Compare efficiency (Chiaki-Fanny)

	Chiaki			Fanny (5 variables + efrac + (totpe/evis))	
Erec (GeV)	Signal	Bckg	Signal	Bckg(numu)	Bckg(NC)
$0 \sim 0.5$	88.0%	15.0%	88.7%	41.5%	16.2%
$0.5 \sim 1$	78.0%	25.0%	82.7%	42.2%	27.2%
$1.0 \sim 1.5$	75.0%	22.0%	79.8%	33.7%	28.0%
$1.5 \sim 2.0$	70.0%	30.0%	78.9%	19.7%	36.9%
$2.0 \sim 2.5$	80.0%	30.0%	76.6%	20.2%	38.8%
$2.5 \sim$	85.0%	35.0%	71.0%	21.9%	42.6%

Notes: - Chiaki's numbers come from an estimation on plot p. 34 of his talk

- I did not implement the Cherenkov angle yet
- Need to reweight my bckg in order to really be able to compare

Energy fraction

The energy fraction is $\mathrm{E}\left(\gamma_{2}\right) /\left(\mathrm{E}\left(\gamma_{1}\right)+\mathrm{E}\left(\gamma_{2}\right)\right)$

$$
\text { pi0_e }(2,1)
$$

(pi0_e(1,1)+pi0_e(2,1))

Efficiency with/without energy fraction

			5 variables			
Erec(GeV)	Signal	Bckg $(v \mu \mathrm{CC})$	Bckg(NC)	Signal	Bckg $(v \mu \mathrm{CC})$	Bckg(NC)
$0 \sim 0.35$	90.7%	43.3%	14.5%	92.2%	37.3%	14.5%
$0.35 \sim 0.85$	83.3%	43.5%	25.8%	84.3%	43.3%	26.5%
$0.85 \sim 1.5$	80.1%	34.2%	27.8%	79.1%	31.2%	27.7%
$1.5 \sim$	75.3%	21.1%	40.4%	64.8%	20.7%	37.8%

Note: Adding the energy fraction improves the separation at high E

Total pe charge /evis

Efficiency with/without totpe/evis

$c \mid$	5 variables					
Erec(GeV)	Signal	Bckg $(v \mu \mathrm{CC})$	Bckg(NC)	Signal	Bckg $(v \mu \mathrm{CC})$	Bckg(NC)
$0 \sim 0.35$	92.2%	38.6%	13.4%	92.2%	37.3%	14.5%
$0.35 \sim 0.85$	84.6%	41.2%	25.7%	84.3%	43.3%	26.5%
$0.85 \sim 1.5$	79.1%	29.5%	27.8%	79.1%	31.2%	27.7%
$1.5 \sim$	64.6%	20.5%	39.4%	64.8%	20.7%	37.8%

Note: Adding totpe/evis does NOT improve much the separation at high E

Backups

General efficiency

Comparing variables efficiencies

Comparing variables efficiencies

Comparing variables efficiencies

