Status report - and lots of questions...

Fanny Dufour

July 4th 2006

Outline

- Background normalization computation... remaining questions.
- Oscillation analysis some questions as well.
- SK-II MC

Background computation

From Okumura-san's I know that:

- * normalize to 1Mtonx1yr event spectrum (from nunokawa-table)
- * kam nue 37148.4 ev/1Mton/1yr (0-1.5GeV)
- * kam nueb 10874.8 ev/1Mton/1yr (0-1.5GeV)
- * korea nue 2932.3 ev/1Mton/1yr (0-1.5GeV)
- * korea nueb 858.4 ev/1Mton/1yr (0-1.5GeV)

Nakayama-san and his answer was:

* 0.27Mton*yr (with 4MW beam) at Kamioka .

- *The numbers of single-ring mu-like events with
- *0.2-1.5 GeV neutrino energy are

*nu beam : 8144.65

*anti-nu beam : 3143.31 .

which are basically the same once I renormalize to 1Mton.

Question: Am I wrong to think I need two different sets of numbers? I think I am wrong but.....

What to do then?

So far, my likelihood is defined as:

events who pass every cuts (4 precuts + likelihood) events who pass all precuts (FCFV, e-like, 1-ring,no decay_e)

If I want to use the normalization stated before then the likelihood efficiency must be:

events who pass every cuts (4 precuts + likelihood) all single-ring events (FCFV? no decay_e?)

Question: Right? What about FCFV and no decay_e?

Remaining questions

Nakayama-san gives e-like and mu-like events numbers.

Question: Can I use the e-like number and use the previous definition of my likelihood efficiency?

Oscillation analysis

• I modified every scripts and kumac in order to do the off-angle analysis (rename file_oa.sh or file_oa.kumac)

Question: Which value of dm, and distance should I use? distance = 1050km? dm=2.5?

• Everything seems to be working fine. (I started even if my background spectrum was wrong just to check that the tools were working and to know how much time I needed)

 One step (loop_fraction.sh) seems to take long (around 8h)
Question: Is any other step time consuming or is it the only one?

SK-II MC

In order to do a study of of 20% pmt coverage vs. 40% pmt coverage, I used SK-II ATM MC and computed the likelihood efficiency.

All plots are located at http://hep.bu.edu/~fdufour/t2kk in official plots.

But here are some of them:

NB: in order to improve the SK-II likelihood, some of the binning should be changed, but I will not do it now, since it would be time consuming.

Ring counting parameter:

SK-II

SK-II probably better after rebinning

Polfit Likelihood parameter:

SK-II

Likelihood results:

SK-I

SK-II

Efficiency tables:

Rec Enu	0~0.35	0.35~0.85	0.85~1.5	1.5~
Nu-mu CC				
efficiency NC	15.5%	30.4%	11.6%	13.5%
efficiency Nu-e CC	9.9%	21.3%	23.6%	34.7%
efficiency	90.5%	83.7%	79.6%	76.4%
SK-II:				
Nu-mu CC				
efficiency NC	19.0%	37.7%	30.3%	15.8%
efficiency	14.2%	21.5%	24.3%	37.0%
efficiency	92.4%	84.8%	84.2%	73.6%