Likelihood analysis for e/π^0 separation

Fanny Dufour, T2K pre-meeting

Outline

- Motivation
- Maxim's Results
- Likelihood variables
- Likelihood results and comparison with Maxim's results
- Future plan

Introduction

Motivation: For the T2K to Korea (T2KK) project, we need a good e/π^0 separation over a large energy range.

 \rightarrow Created a new likelihood for e/ π^0 separation

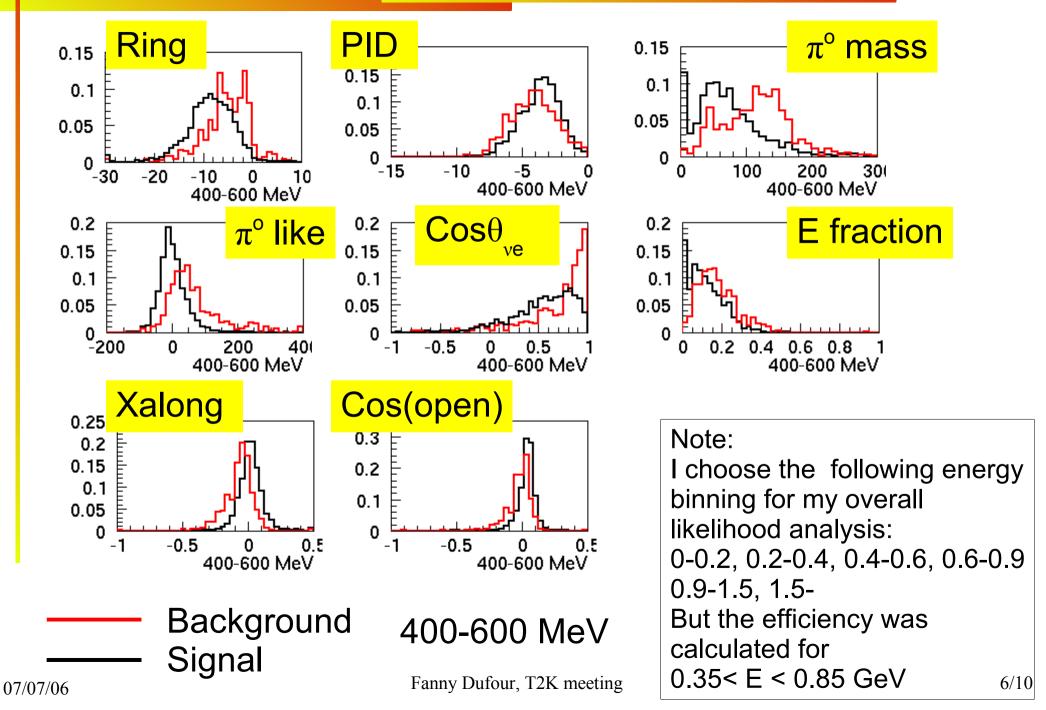
But this new likelihood is also useful in the T2K energy range 0.35< E < 0.85 GeV

Maxim's Results

Assuming the following precuts:

- FCFV, Evis > 100 MeV
- Single ring
- E-like
- No decay electron

At Super-K, 22.5Kt, 5 years, $\Delta m^2_{23} = 2.5 \text{ e-} 3 \text{ eV}^2$

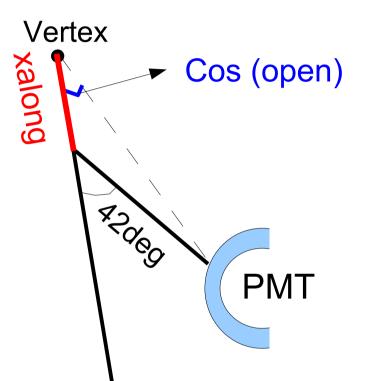

		νμ CC mis-ID	NC	Beam ve	Signal (chooz)
	0.35 <ev<0.85 (gev)<="" th=""><th>1.37(0.07%)</th><th>50.8 (6.3%)</th><th>20.7 (11.3%)</th><th>127.2 (58.3%)</th></ev<0.85>	1.37(0.07%)	50.8 (6.3%)	20.7 (11.3%)	127.2 (58.3%)
1.	Cosθ _{√lepton} <0.9	1.025 (0.05%) —	35.8 (4.5%)	17.5 (9.6%)	111.4 (51.1%)
2.	Polfit Mγγ < 100 MeV/c²	0.47 (0.02%)	11.8 (1.5%)	13.9 (7.6%)	94.1 (43.2%)
3.	∆logLikelihood < 80	0.35(0.017%)	9.8 (1.2%)	13.5 (7.4%)	91.9 (42.2%)

I did not use cuts 1. 2. 3. but I use those variables and add new variables into a likelihood.

Input variables for the likelihood

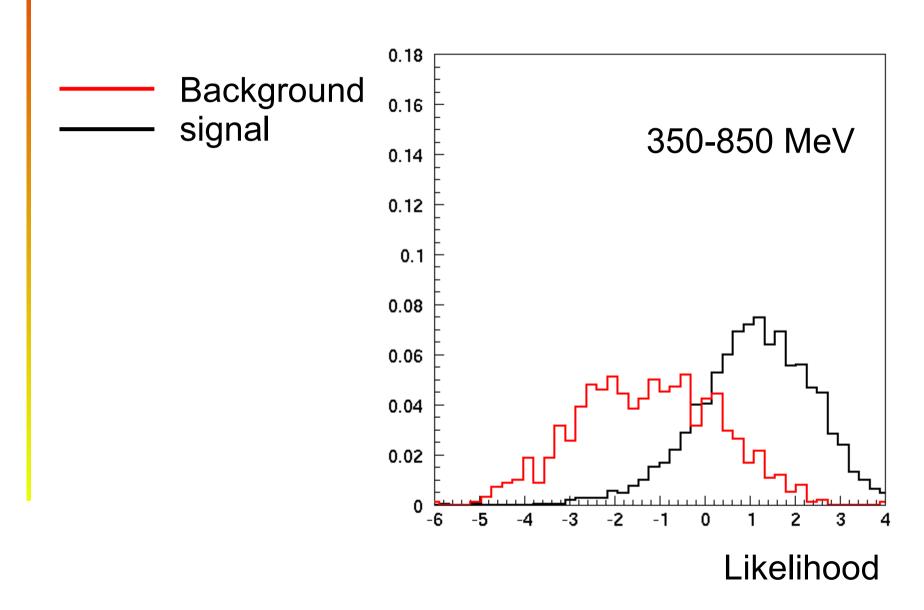
NB: Polfit2 is used in this dlfct **Ring parameter** study **PID** parameter (sqrt(-probms(2,1))-(sqrt(-probms(3,1))) π° mass 2. pi0mass(1) π° likelihood 3. (pi0like(1)-pi0like(2)) $\cos\theta_{ve}$ 1. (dir(i,1)*dirnu(i,1)) pi0 e(2,1)/(pi0 e(1,1)+pi0_e(2,1)) **Energy fraction** Chi Xalong See later Chi cos(open Fanny Dufour, T2K meeting 5/10

Distributions



Xalong and Cos(open)

Work done by Danka


Xalong: Distance between vertex and emitting point of Cherenkov light.

Cos(open): Angle between vertex-pmt vector & direction of neutrino

- I compute those values for each hit pmt, plot distributions.
- Using part of the MC I create templates of those distributions.
- For each event, I assign a χ^2 value comparing the event against the templates.
- The χ^2 value is added to the likelihood.

Final Likelihood results:

Likelihood results

<mark>₋ Maxim:</mark> ——				
	νμ CC mis-ID	NC	Beam ve	Signal (chooz)
0.35 <ev<0.85 (gev)<="" td=""><td>1.37(0.07%)</td><td>50.8 (6.3%)</td><td>20.7 (11.3%)</td><td>127.2 (58.3%)</td></ev<0.85>	1.37(0.07%)	50.8 (6.3%)	20.7 (11.3%)	127.2 (58.3%)
Cosθ _{√lepton} <0.9	1.025 (0.05%)	35.8 (4.5%)	17.5 (9.6%)	111.4 (51.1%)
Polfit Mγγ < 100 MeV/c²	0.47 (0.02%)	11.8 (1.5%)	13.9 (7.6%)	94.1 (43.2%)
∆logLikelihood < 80	0.35(0.017%)	9.8 (1.2%)	13.5 (7.4%)	91.9 (42.2%)
New:				
0.35 <e<0.85 Likelihood</e<0.85 	1.5 47.0% 0.5 0.023%	53.1 6.5% 10.9 1.3%		125.9 58.7% 102.6 47.8%

Signal efficiency is better: Background rejection (NC) equivalent: $42.2\% \rightarrow 47.8\%$ $1.2\% \rightarrow 1.3\%$

Future plan

There is room for improvement:

- one more variable: total pe / evis is useful around 800 MeV → will be added by Sunday.
- Study which variable is useful more carefully.
- Compare with atmospheric data

 → Check how well the variables are
 reproduced by MC.
- Use different variables for different energy range might give better results.
- Upgrade to SK-II software: new ring counting (includes ringer)

Bakcups..

How to use those variables:

Using 20yr of MC:

Create template of Xalong and Cos(open) distributions.

On 100yr MC:

For each event compute χ^2 (signal) and χ^2 (bckg) using the templates.

$$\chi_{sig}^{2} = \sum_{bin} \left[\frac{(event(bin) - template_{sig}(bin))^{2}}{(event(bin))} \right]$$

Define new variables: var = χ^2 (bckg) - χ^2 (signal)

Create new bank containing those variables (EPI0SEP)

Create new zbs and hbk files containing this new bank

Add those 2 variables in the likelihood.

Fanny Dufour, T2K meeting