T2KK sensitivity as a function of off-axis angle

Updated version, August 23 2006

Fanny Dufour, Boston University

2nd T2KK workshop, July 13, 2006

Outline

Motivation

Likelihood analysis:

- Analysis strategy
- Likelihood variables
- Efficiency results
- Future plans

Oscillation analysis

- Introduction
- Spectrum (each off-axis angle)
- χ^2 analysis
- Sensitivity curves
- Conclusions

Overview

Study the sensitivity to CP violation and mass hierarchy as a function of the off-axis angle.

Axis considered: 1°Off-Axis (OA) 1.5°Off-Axis (OA) 2°Off-Axis (OA) 2.5°Off-Axis (OA)

Pros & cons

Small off-axis angle: (high energy tail)

1st appearance peak
 more NC background

Big off-axis angle: (narrow peak)

Low background
 Low statistics at high E ¹/_E
 Only 2nd appearance peak

Neutrino Energy

Likelihood analysis strategy

Based on the T2K v_{a} appearance analysis

- Apply following precuts: FCFV, Evis >100 MeV Single ring e-like no decay electron
- In this study, I used the T2K Monte Carlo.
- Combine Super-K variables into a likelihood to discriminate electrons from π^0 .

8 Variables

Standard SK variables:

Ring parameter PID parameter

Chi Xalong

Chi cos(open)

Special π[°] fitter variables: (POLfit, Pattern Of Light)

 π° mass π° likelihood Energy fraction of 2nd ring

New variables, defined for this analysis: Beam related variable:

08/25/06

Fanny Dufour, Boston University

Cosθ

Ring and PID Parameter:

Those variables are not only precuts, (keep single-ring, e-like)

we also use the variables themselves in the likelihood.

MC
CCQE
SK data

7/22

POLfit

I use : π° mass $\pi^{\circ} \Delta Likelihood$ Energy fraction of 2nd ring

- Target: FCFV 1R-elike events
- ▲L≡Likelihood(2γ assump.) –
 Likelihood(electron assump.)
- Try to reconstruct two γ rings
- Input: vertex, visible energy, and the 1st γ direction by the standard fitter
- Compare observed & expected (direct+scatter) charge
- Vary the 2nd γ direction and the energy fraction until the best match found

Xalong & Cos(open)

Xalong: Distance between vertex and emitting point of Cherenkov light.

Cos(open): Angle between vertex-pmt vector & direction of particle

- I compute those values for each hit pmt, plot distributions.
- Using part of the MC I create templates of those distributions.
- For each event, I assign a χ^2 value comparing the event against the templates.
- The χ^2 value is added to the likelihood.

Example of distribution (1)

Example of distribution (2)

Overview of distributions:

08/25/06

Background

Signal

final likelihood

Background
Signal
v_e CCQE

Final efficiency

E _{rec} (Ge	eV) 0-0).35 ().35-0.85	0.85-1.5	1.5-
ν _μ CC	fcfv 2	86.9	415.7	370.4	995.0
	1ring 1	70.2	220.8	146.3	433.6
	e-like	3.6	4.5	5.3	25.4
	nodecay-e	1.4	1.5	1.9	11.9
	likelihood	0.2	0.5	0.6	2.2
	efficiency	14.6%	31.4%	32.0%	18.7%
NC	fcfv	22.0	229.6	86.0	83.6
	1ring	89.0	66.2	26.0	41.1
	e-like	53.4	57.2	24.9	39.6
	nodecay-e	50.4	53.1	20.8	32.6
	likelihood	5.1	10.9	4.0	11.1
	efficiency	10.1%	20.5%	19.5%	34.0%
V _e	fcfv 1	2.2	36.7	33.7	73.3
	1ring	5.7	21.6	16.9	37.4
	e-like	5.6	21.3	16.8	37.2
	nodecay-e	4.7	18.9	14.5	30.8
	likelihood	4.0	15.4	11.3	22.1
	efficiency	85.4%	81.8%	78.3%	71.7%

NB: arbitrary numbers

08/25/06

Likelihood future

There is room for improvement:

- Add new variables (Total pe charge/Evis, SK-II software variables, etc)
- Use different set of variables for different energies
- Extend analysis to higher energy bins
- Test Neural Network analysis
- Compare with atmospheric data

 → Check how well the variables are
 reproduced by MC.

Oscillation analysis

Spectrum for each OA

χ^2 Definition

The oscillation analysis was done for: 4MW beam

k=1,4 0.27Mton in Korea 0.54Mton in Kamioka 0.27Mton in Korea *When Kamioka* 4 years running of neutrino *only* 4 years running of antineutrino With the following energy bins (MeV): i=1,7 400-500, 500-600, 600-700, 700-800, 800-1200,1200-2000, 2000-3000 $\chi^2 = \sum_{i=1}^{4} \left(\sum_{i=1}^{7} \frac{\left(N(e)_i^{\text{obs}} - N(e)_i^{\text{exp}} \right)^2}{\sigma_i^2} \right) + \sum_{i=1}^{3} \left(\frac{\epsilon_j}{\tilde{\sigma}_i} \right)^2$ $N(e)_i^{\text{exp}} = N_i^{\text{BG}} \cdot \left(1 + \sum_{j=1}^2 f_j^i \cdot \epsilon_j\right) + N_i^{\text{signal}} \cdot \left(1 + f_3^i \cdot \epsilon_3\right) \quad .$ hep-ph 0604026 eq 3) and 4)

One bug was fixed...

So the next set of slide always have and old and a new slide.

The bug was: In the case of the 2 detector setup (Kamioka+Korea) I was assigning the background according to the off-axis angle for both Kamioka and Korea, which is wrong.

I should have kept the background setup to 2.50A for Kamioka and change only the background for Korea.

Sorry for the confusion.

Sensitivity mass hierarchy (old)

Sensitivity mass hierarchy (new)

Sensitivity mass hierarchy (old)

Sensitivity mass hierarchy (new)

Sensitivity CP violation (old)

Sensitivity CP violation (new)

Conclusions (old)

Likelihood analysis developed for v appearance:

ε = 82% / BG = 21% → ε = 72% / BG = 34%

Oscillation analysis conclusions:

For mass hierarchy: Best set up is when OA is small (= 1.0°) 1st osc maximum atter effect

For CP violation study: Best set up is Kamioka only (for small $\sin^2 2\theta_{13}$) or OA big (= 2.5°) if 2 detectors (for big $\sin^2 2\theta_{13}$) 2^{nd} osc maximum \longrightarrow bigger CP effect

Future plan: Extend analysis to higher energies (especially for 1° OA)

Conclusions (new)

Likelihood analysis developed for v appearance:

ε = 82% / BG = 21% → ε = 72% / BG = 34%

Oscillation analysis conclusions:

For mass hierarchy: Best set up is when OA is small (= 1.0°) 1st osc maximum _____ matter effect

For CP violation study:

Not many difference for different OA angle unless θ_{13} is very small and in that case 1.0° OA is the best of 2 detector setup, but Kamioka only would even be better.

Future plan: Extend analysis to higher energies (especially for 1° OA)

Backups:

Sensitivity CP violation

ring param

pid

pi0mass

pi0like

xalong cosopen (distribution)

usefulness of variables

add/remove variables eff tables