2KM water Cherenkov detector: v_e appearance analysis

Maximilien Fechner

CEA/Saclay DAPNIA/SPP

Outline

Interaction / Simulation update

2KM reconstruction updates

 $\bullet \nu_{_{\rm e}}$ appearance analysis

I. Interaction / Simulation update

- Neutrino interactions parametrization
- GEANT4 simulation
- Monte Carlo files / generated livetime

Neutrino interactions parametrizations

Neutrino interactions are simulated in 2 steps :

1. Make neutrino 4-vectors $(E\,,\,ec{p})\,$ using the JNUBEAM ${
m v}$ flux simulator

2. Use NEUT to generate the actual interactions

In order to simulate 5.10²¹pot in 100 tons @ 2KM, we need approx. 3-4 million events.

Using the same method as SK, keeping several important effects :

2. Non uniform distribution of vertices over the 2KM detector surface (consequence of the off-axis beam)

GEANT4 simulation : improvements

- Retuned reflections and scattering lengths to match through-going muon data
- Updated PMT digitization code
- Changed hadronic models in GEANT4 (see J. Raaf's talk)

GEANT4 simulation : energy scale tuning

Example of simulation / reconstruction tuning : charge scale and energy scale using K2K 1kton data

Current T2K MC statistics

2KM water Cherenkov detector MC :

- v : 250,000 events (total), 93,000 events in 100t FV --> 17.1 years
- v_{μ} : ~2.3 million events (total), 840,000 events in 100t FV --> 3.4 years (was 0.3yr in march05)

Files are available at http://www.phy.duke.edu/~mfguest/2km-04b-ntuples

SK water Cherenkov detector MC :

- v_{p} : 450,000 events in the FV
- v_{μ} : 40,935 events in the FV

(See J. Raaf's talk)

II. 2KM reconstruction updates

- Vertex fitters
- Ring counting
- PID
- POLfit

2KM reconstruction : introduction

- Based on 1KTon software
- Modified to accept 2KM simulated data
- All the standard reconstruction programs were tuned to take into account specific 2KM behaviour
- Check that performance is similar to SK's using mono-energetic e/μ events & T2K beam

2KM reconstruction : vertex fitter

Tuned ring-edge finding routine and MS-fit calling sequence

2KM reconstruction : ring counting

Ring counting performance is almost identical to SK for $E_{vis} < 1 \text{ GeV}$ (where the signal region is)

Ring counting efficiency for CCQE v interactions drops off because 2^{nd} ring is found Similar @ SK & 2KM

, T2K coll. meeting

2KM reconstruction : PID

2KM reconstruction : polfit timing cut

Timing cut removes scattered and reflected light; width at SK is 30 ns.

Tune the cut to keep the same fraction of light as at SK

Using single ring, e-like events from numu & nue @ SK & 2KM

2KM reconstruction : POLfit

- Use polfit2 at 2KM & SK for this analysis
- Compare 2KM with BG at SK Signal @ Chooz limit shown at SK

Events passing all v_e selection criteria except the one being studied FCFV, 1ring, e-like, no decay e-, $\cos \theta_{vl} < 0.9$, 0.35 GeV < Ev < 0.85 GeV

2KM reconstruction : POLfit (cont'd)

Using events after passing all criteria except the one under study FCFV, 1ring, e-like, no decay e-, $\cos \theta_{vl} < 0.9$, 0.35 GeV < Ev < 0.85 GeV Compare distributions for the <u>background</u> at SK and 2KM

III. $\nu_{_{\rm e}}$ appearance analysis

- Selection @ SK & 2KM
- Extrapolation
- Analysis systematics
- Other systematics
- Results

$\boldsymbol{\nu}_{_{\boldsymbol{e}}}$ appearance analysis : selection cuts

• Compare selection efficiencies at SK & 2KM

(Numbers of events correspond to 5.10²¹ pot = "5 years")

 Determine a conservative estimate of the systematics on background "prediction" from 2KM

v_e appearance cuts

2KM

SK

- FV 22.5 kt (distance to wall > 200 cm) • **FV 100t** (-415cm<Z<215cm && sqrt(x^2+y^2)<225cm) • FC (max charge on a PMT < 100 p.e.) • **FC** (# of OD clusters < 10) • Evis > 100 MeV • Evis > 100 MeV 1 ring, e-like • 1 ring, e-like • No decay electron : use MC info to compute decay e-• No decay electron : use reconstructed detection probability and use random numbers decay e- info • **cos** θ_{y_a} < **0.9** (coherent pi0 suppression) • cos θ_{ve} < 0.9 (coherent pi0 suppression) • Polfit Myy < 100 MeV/ c^2 • Polfit Myy < 100 MeV/ c^2
- ∆log-likelihood < 80

• ∆log-likelihood < 80

Selection efficiencies at SK

At Super-K , 22.5 kt, 5 years, $\Delta m_{23}^2 = 2.5e-3 \text{ eV}^2$:

	νμ CC mis-ID	NC	Beam ve	Signal (chooz)
FC,FV,Evis>100 (MeV)	2081.7	801.37	182.9	217.9
Single ring	983 (47.2%)	214.7 (26.8%)	89 (48.7%)	1843 (84.6%)
E-like	39.0 (1.9%)	168.3 (21.0%)	86.7 (47.4%)	182.2 (83.6%)
No decay e-	13.6 (0.65%)	149.9 (18.7%)	72.4 (39.6%)	166.4 (76.2%)
0.35 <ev<0.85 (gev)<="" td=""><td>1.37(0.07%)</td><td>50.8 (6.3%)</td><td>20.7 (11.3%)</td><td>127.2 (58.3%)</td></ev<0.85>	1.37(0.07%)	50.8 (6.3%)	20.7 (11.3%)	127.2 (58.3%)
$\cos\theta_{vlepton}$ <0.9	1.025 (0.05%)	35.8 (4.5%)	17.5 (9.6%)	111.4 (51.1%)
Polfit Mγγ < 100 MeV/c²	0.47 (0.02%)	11.8 (1.5%)	13.9 (7.6%)	94.1 (43.2%)
∆logLikelihood < 80	0.35(0.017%)	9.8 (1.2%)	13.5 (7.4%)	91.9 (42.2%)

- Efficiencies very similar to the previous analysis (0.03%, 1.06%, 7%, 42% respectively)
- <u>Bug fix in official SK event rates :</u> reduced by ~5% (10% in signal region)

Selection efficiencies at 2KM

	νμ CC mis-ID	NC	Beam ve
FC,FV,Evis>100 (MeV)	564229.1	93804.6	20250.25
Single ring	426562 (75.6%)	26206 (27.9%)	10535 (52%)
E-like	12263.7 (2.2%)	20971 (22.4%)	10113 (49.9%)
No decay e-	3283.7 (0.57%)	17240.8(18.4%)	8032.9 (39.7%)
0.35 <ev<0.85 (gev)<="" td=""><td>1223.3 (0.22%)</td><td>6938.8 (7.4%)</td><td>2422.4 (12.0%)</td></ev<0.85>	1223.3 (0.22%)	6938.8 (7.4%)	2422.4 (12.0%)
$\cos\theta_{vlepton} < 0.9$	963.9 (0.17%)	4641.8 (4.9%)	2080.9 (10.3%)
Polfit Mγγ < 100 MeV/c²	536.5 (0.095%)	1389.8 (1.48%)	1646.6 (8.13%)
∆logLikelihood < 80	468.7 (0.083%)	1086.2 (1.16%)	1585.5 (7.83%)
SK, ALL CUTS	0.35 (0.013%)	9.8 (1.2%)	13.5 (7.4%)

NC and $\nu_{_{e}}$ are almost identical !

Oscillations cause differences

Efficiency differences

For each category of events (v_{μ} CC, NC, beam v_{e}) compare SK and 2KM efficiencies using "unoscillated" SK efficiencies

Extrapolation from 2KM to SK

Simple scaling prediction with no corrections :

 $N_{sk} = N_{2km} (M_{sk}/M_{2km})(L_{sk}/L_{2km})^2 (\epsilon_{sk}/\epsilon_{2km})$ Assumed to be 1 here

For $v_{_{\rm II}}$ CC also apply v oscillation "survival" probability

Get prediction of BG at SK from 2KM measurement assuming identical efficiencies & spectra -> simple scaling with squared distances and fiducial masses & no corrections

Systematics :

- Analysis cuts --> next slides
- Energy calibration --> next slides
- FV ~ 4 % = error @ SK + error @ 2KM in quadrature

Extrapolation systematics : differences between SK & 2KM

- Compute the efficiency of each cut
- Use relative difference between SK & 2KM as a very conservative estimate of the systematic error on each cut
- Add in quadrature

$\sigma^2 = \sum_i$	$\epsilon_{SK,i} - \epsilon_{2KM,i}$
	$\varepsilon_{2\mathrm{KM},i}$

	c _{SK} c _{2KM}		
		ε _{2KM}	
FC,FV,Evis100-			
1000	Beam ve	NC	νμ misID
1R	-2.05%	2.82%	1.43%
E-like	1.00%	-4.64%	-13.51%
No mu-e	1.68%	5.00%	8.59%
cos(q)<0.9	-0.60%	6.27%	2.23%
m_gg<100	-1.38%	-1.93%	2.37%
DL<80	0.64%	-2.50%	-10.01%
Enu	0.30%	3.76%	-30.50%
TOTAL	3.28%	10.86%	36.05%

Then weight the contributions according to the actual numbers of events : 13.0 beam v_e CC events, 9.4 NC events & 0.7 v_u CC events

TOTAL "ANALYSIS" ERROR = 1.13/23.01 = 4.9%

Energy calibration systematics

Energy calibration errors are taken to be 2.1% at each detector, uncorrelated.

- Vary cuts by +/- 1 sigma corresponding to this uncertainty (Evis cuts, Ev cuts, polfit mass cuts)
- Relative variation of the final number is the error due to the energy calibration
- Add in quadrature SK and 2KM

Energy scale	SK	2KM
NC	9.1%	6.8%
νμ CC misID	5.7%	5.4%
Beam ve	0.6%	0.5%

Combining "analysis" errors and energy calibrations errors in quadrature, and extrapolating to SK :

	NC	Beam ve (CC)	νμ mis-ID (CC)
SK simulation	10.15	13.23	0.35
Prediction from 2km (±stat±syst)	9.38±0.28±1.02	12.97±0.33±0.43	0.67±0.03±0.24

Systematic error = 4.9% \rightarrow including energy calibration = 6.8%

Final result

Add 4% FV(=2.8% uncorrelated at both positions)

Super-Kamiokande : 23.73 ± 20% (expected stat for 5 years) scaled from 2KM : 23.01 ± 0.41 (exp. stat) ± 1.86 (syst) = 23.01 ± 0.41 (exp.stat) ± 6.8%(analysis&energy)± 4% (FV) = 23.01 ± 8.1 %

Compare energy spectra @ SK and 2KM with systematic error : Excellent agreement !

Conclusion

- Interaction / simulation :
 - Large statistics available at 2KM and SK
 - Improved GEANT4 MC
- 2KM reconstruction :
 - Improved reconstruction @ 2KM : vertex fit, ring counting, PID, POLfit
- Analysis :
 - Total BG at SK for 5 years is 23.8 events
 - Prediction from 2KM is 23.0 \pm 8.1%, without any attempt to correct for anything (neither beam nor analysis differences between SK & 2KM)
 - Differences between the detectors contribute as 5%
 - Work on incorporating errors in full fit is in progress, will be shown by
 - N. Tanimoto tomorrow in the SK session.