
2011 REU Root Tutorial @ Duke Jen Raaf

Lecture I: Basics

Linux commands
What is ROOT?
Interactive ROOT session

- command line vs. macros vs. user-compiled code
Opening files / accessing information
Histograms and Trees and Functions, Oh My!

1

2011 REU Root Tutorial @ Duke Jen Raaf

Some basic linux commands
Linux command What it does...

ls List contents of a directory

pwd Show present working directory

mkdir test Make a new directory called test

cd test Change to directory test

cp file1.txt file2.txt Copy file1.txt to file2.txt

mv file1.txt file3.txt Move file1.txt to file3.txt

cat file2.txt
less file2.txt
more file2.txt

Print the contents of a file to the screen

emacs -nw
vi
pico
...

Console text editors (no extra window pops up)

emacs
xemacs
nedit
gedit
...

GUI text editors (extra window pops up)

2

2011 REU Root Tutorial @ Duke Jen Raaf

What is ROOT?
 Versatile software package developed for performing data analysis

• Read data from some source
• Write data to a file
• Select data with some criteria (“cuts”)
• Perform calculations and fits
• Produce results as plots, graphs, numbers, fits, etc.
• Save results in some format (ROOT file, image of plot, ...)

ROOT can be used in many ways:
 Command line

Good for quickly making plots, checking file contents, etc.
 Unnamed macros

Execute commands as if you typed them on the command line
 List of commands is enclosed by one set of { }.
 Execute list of commands from command line by: “.x file.C” (without quotes)
 Named macros / Compiled code

Best for analysis, can be compiled and run outside of ROOT, or loaded and executed
during interactive session

Developed and supported by high energy physics community
Homepage with documentation and tutorials (http://root.cern.ch)
Google will also find the documentation (for example, try “root TH1F”)

3

http://root.cern.ch
http://root.cern.ch

2011 REU Root Tutorial @ Duke Jen Raaf

Syntax

Many of the commands we will use will have this
general form:

TSomething* mything = new TSomething(stuff);

All ROOT classes
start with T:

TFile
TH1
TTree
TCanvas
...

Means make a
“pointer” (in this case,
of type TSomething)
For now, don’t worry
about what a pointer is.
It’s not important for this
tutorial.

Name of pointer C++ operator
that allocates
memory

Initializes the
allocated memory
with whatever “stuff”
TSomething requires.
Look at ROOT class
definition to find out what
“stuff” you must provide.

This is called a “constructor.”

Note: In C++, if you allocate memory using the “new” operator, you must later use
“delete mything” to release the memory... otherwise your code will have a memory leak.
We will not worry about that today, but keep it in mind for your future code-writing.

4

2011 REU Root Tutorial @ Duke Jen Raaf

Example: TCanvas Constructors

5

2011 REU Root Tutorial @ Duke Jen Raaf

javier:~> root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 5.24/00 29 June 2009 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

ROOT 5.24/00 (trunk@29257, Jun 30 2009, 09:23:51 on macosx)

CINT/ROOT C/C++ Interpreter version 5.17.00, Dec 21, 2008
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root [0] TCanvas *dog = new TCanvas();

Constructors, continued

Default constructor makes a
700x500 pixel canvas with name “c1”

root [1] TCanvas *cat = new TCanvas(“cat”,”Kitty Cat”,300,300);

Note: Commands you execute directly from the command line will be
saved in a file called .root_hist (which will be in your home area for linux &
mac... not sure where for windows).

6

http://root.cern.ch
http://root.cern.ch

2011 REU Root Tutorial @ Duke Jen Raaf

Unnamed Macros

root [0] gSystem->pwd();
root [1] gSystem->cd(“/directory/where/you/put/downloaded/files”);
root [2] .x unnamed_macro.C
Hello Duke REU students!
x = 31.2
y = 0
i = 12
The sum of x and i is: 43.2
root [3]

Download and open the following file with your favorite editor:
http://home.fnal.gov/~jlraaf/2011REU/lecture1_exercises/unnamed_macro.C

Execute the macro by “.x”

Find out which directory you’re in, then
change to where you saved the macro.

7

http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C
http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C

2011 REU Root Tutorial @ Duke Jen Raaf

Named Macros

root [3] .L named_macro.C
root [4] main()
Hello Duke REU students!
x = 31.2
y = 0
i = 12
The sum of x and i is: 43.2
root [5]

Download and open the following file with your favorite editor:
http://home.fnal.gov/~jlraaf/2011REU/lecture1_exercises/named_macro.C

Load the macro by “.L”
Then execute the function
“main()” contained in it

8

http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C
http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C

2011 REU Root Tutorial @ Duke Jen Raaf

Compiled Code

javier:~> g++ -Wall `root-config --cflags --libs` -o test compiled_code.C
javier:~> ls -l
-rwxr-xr-x 1 jlraaf staff 13K Jul 17 14:39 test
-rw-r--r-- 1 jlraaf staff 777B Jul 17 14:24 compiled_code.C
-rw-r--r-- 1 jlraaf staff 674B Jul 17 13:23 named_macro.C
-rw-r--r-- 1 jlraaf staff 911B Jul 17 13:22 unnamed_macro.C
javier:~> ./test
Hello Duke REU students!
x = 31.2
y = 4.27382e-41
i = 12
The sum of x and i is: 43.2
javier:~>

Download and open the following file with your favorite editor:
http://home.fnal.gov/~jlraaf/2011REU/lecture1_exercises/compiled_code.C

Notice that ‘y’ is some crazy value.
It was not initialized by the compiler.
That’s okay for us here because we’ll assign it
a value later that is the sum of x and i.
Just beware... this can sometimes cause
nasty hard-to-find bugs.

Why should you use compiled code?
• For simple things it doesn’t matter, but for less simple things (your
analysis, perhaps) it will run MUCH faster than using a named or
unnamed macro in ROOT.
• It will force you to write proper C++

9

http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C
http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C

2011 REU Root Tutorial @ Duke Jen Raaf

Opening a file and accessing its contents

root [0] TFile* f1 = new TFile(“histograms.root”);
root [1] f1->ls();
TFile** histograms.root
 TFile* histograms.root
 KEY: TH1F histo1;1 Fancy 1-D Histogram
 KEY: TH2F histo2;1 Schmancy 2-D Histogram

Download the following file:
http://home.fnal.gov/~jlraaf/2011REU/lecture1_exercises/histograms.root

TCanvas TCanvas(Bool_t build = kTRUE)
TCanvas TCanvas(const char* name, const char* title = "", Int_t form = 1)
TCanvas TCanvas(const char* name, const char* title, Int_t ww, Int_t wh)
TCanvas TCanvas(const char* name, const char* title, Int_t wtopx, Int_t wtopy, Int_t ww,
Int_t wh)
TCanvas TCanvas(const char* name, Int_t ww, Int_t wh, Int_t winid)
root [3] TCanvas *c1 = new TCanvas(

root [2] TCanvas *c1 = new TCanvas(

This file contains 2 histograms

Tip: If you can’t remember the correct
syntax, press “Tab” for ROOT to help
you complete a command.

<TAB>

Exercise 1:
Complete the command to make a canvas that is 600 x 300 pixels.
Divide it into 2 regions. (Hint: See TPad class definition at root.cern.ch and look for method Divide)

Change to region 1 and draw histo1. (Hint: c1->cd(1))

Change to region 2 and draw histo2. Note: If you don’t make a canvas, ROOT
will create one for you when you try to draw
something. Personally, I like to make my
own because I can control the dimensions.

List the contents of the file.

10

http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C
http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C

2011 REU Root Tutorial @ Duke Jen Raaf

Exercise 1 Solution

root [3] TCanvas* c1 = new TCanvas(“myc1”,”Jen’s Canvas”, 600,300);
root [4] myc1->Divide(1,2);
root [5] myc1->cd(1);
root [6] histo1->Draw();
root [7] myc1->cd(2);
root [8] histo2->Draw();
root [9]

ROOT manages memory using “names.”
If you create two objects with the same name, even if they have different pointers, it will
complain about memory leaks and delete one of your objects.

Canvas
name

Canvas
title

Exercise 2:
Try it to see what happens!
Make a new canvas with pointer c2, but the same name as your first canvas.
Try to change back to the first canvas.

11

2011 REU Root Tutorial @ Duke Jen Raaf

Changing Histogram Attributes
Histograms are drawn via the THistPainter class in ROOT.
You can find all drawing options by looking at the web documentation
http://root.cern.ch/root/html/THistPainter.html

root [9] histo1->SetLineColor(kBlack);
root[10] histo1->SetMarkerColor(kBlue);
root[11] histo1->GetXaxis()->SetTitle(“X axis title [units]”)
root[12] histo1->GetYaxis()->SetTitle(“Entries”);
root[13] histo1->Draw(“ep”);

Exercise 3:
Change some attributes of histo2.
Redraw it.
Try other drawing options like “lego2”
Hint: Check THistPainter for even more drawing
options on 2D histograms

12

http://root.cern.ch/root/html/THistPainter.html
http://root.cern.ch/root/html/THistPainter.html

2011 REU Root Tutorial @ Duke Jen Raaf

Exercise 3 (possible) Solution (of many)

Drawing option
“cont”

Drawing option
“surf3”

Drawing option
“lego2”

You may have noticed that
the default ROOT palette is
hideous. Set this less
offensive one by doing:
gStyle->SetPalette(1);

13

2011 REU Root Tutorial @ Duke Jen Raaf

root [0] TFile *myfile = new TFile(“tree.root”);
root [1] myfile->ls();
TFile** tree.root
 TFile* tree.root
 KEY: TTree tree1;1 Reconstruction ntuple
root [2] TTree *t1 = (TTree *)myfile.Get(“tree1”);
root [3] t1->Print();
**
*Tree :tree1 : Reconstruction ntuple *
*Entries : 100000 : Total = 2810647 bytes File Size = 2171135 *
* : : Tree compression factor = 1.30 *
**
*Br 0 :event : event/I *
*Entries : 100000 : Total Size= 421248 bytes File Size = 134514 *
*Baskets : 12 : Basket Size= 32000 bytes Compression= 2.85 *
..
*Br 1 :ebeam : ebeam/F *
*Entries : 100000 : Total Size= 421248 bytes File Size = 260330 *
*Baskets : 12 : Basket Size= 32000 bytes Compression= 1.47 *
..
*Br 2 :px : px/F *
*Entries : 100000 : Total Size= 421194 bytes File Size = 359238 *
*Baskets : 12 : Basket Size= 32000 bytes Compression= 1.07 *
..
*Br 3 :py : py/F *
*Entries : 100000 : Total Size= 421194 bytes File Size = 359138 *
*Baskets : 12 : Basket Size= 32000 bytes Compression= 1.07 *
..
*Br 4 :pz : pz/F *
*Entries : 100000 : Total Size= 421194 bytes File Size = 292046 *
*Baskets : 12 : Basket Size= 32000 bytes Compression= 1.31 *
..
*Br 5 :zv : zv/F *
*Entries : 100000 : Total Size= 421194 bytes File Size = 349087 *
*Baskets : 12 : Basket Size= 32000 bytes Compression= 1.10 *
..
*Br 6 :chi2 : chi2/F *
*Entries : 100000 : Total Size= 421230 bytes File Size = 321049 *
*Baskets : 12 : Basket Size= 32000 bytes Compression= 1.20 *
..

Trees/Ntuples

ROOT data usually stored in a TTree
(or simplified version: TNtuple)

More versatile than histograms
(no information loss).

For a simple tree/ntuple structure,
you can think of it as a table.

If each “TBranch” is like a column,
then each “Entry” is a new cell in the
column.

Download the following file and open it in ROOT:
http://home.fnal.gov/~jlraaf/2011REU/lecture1_exercises/tree.root

Print structure of tree to screen.
This tree contains 7 variables:
event, ebeam, px, py, pz, zy, chi2

14

http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C
http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C

2011 REU Root Tutorial @ Duke Jen Raaf

Trees/Ntuples

Exercise 4:
Draw some other variables from the tree.
Draw a 2D plot of px vs. py
Hint: Look at the TTree Draw methods at http://root.cern.ch/root/html530/TTree.html
Draw px vs. py for events with ebeam > 150.0
Hint: The TTree Draw methods can take a “selection” character string

root [4] TCanvas *jen = new TCanvas(“jen”,”Test Canvas”,400,400);
root [5] t1->Draw(“ebeam”);

15

http://root.cern.ch/root/html530/TTree.html
http://root.cern.ch/root/html530/TTree.html

2011 REU Root Tutorial @ Duke Jen Raaf

Exercise 4 Solution

root [6] t1->Draw(“px:py”,”ebeam>150.0”);

16

2011 REU Root Tutorial @ Duke Jen Raaf

Projecting from a tree into a histogram
Sometimes you may want to put a variable from a tree into a histogram.

root [7] TH1F *h_ebeam = new TH1F(“h_ebeam”,”Beam energy”,100,149.0,151.0);

First define the histogram: Name Title

Number
of

bins
Low edge

High edge

Then use the TTree method “Project” to put the tree contents into the histogram:

root [8] t1->Project(“h_ebeam”, ”ebeam”, ”(px > 10.0) || (py <= 5.0)”);

Selection cuts: optional argument

&& AND

|| OR

== equal

!= NOT equal

> greater than

< less than

>= greater or equal to

<= less or equal to

Cuts are specified using C logicTo define complicated or often-used cuts:
TCut* cut1 = new TCut(“px > 10.0”);
TCut* cut2 = new TCut(“py <= sqrt(2+px**2)”);
TCut* cut3 = new TCut(*cut1 && *cut2);

Then use the TCut when you draw!
t1->Draw(”ebeam”, *cut3);

Exercise 5:
Try making some cuts on tree
variables and drawing/projecting.

17

2011 REU Root Tutorial @ Duke Jen Raaf

Reading data from a text file to make a tree
Download the following file:

http://home.fnal.gov/~jlraaf/2011REU/lecture1_exercises/input.txt

Exercise 6:
Create a new macro and edit it to do
these commands.
Execute it from the ROOT command line.
Open the newly created ROOT file
(oilprices.root) and plot cost vs. year

18

http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C
http://home.fnal.gov/~jlraaf/REU2011/lecture1_exercises/unnamed_macro.C

2011 REU Root Tutorial @ Duke Jen Raaf

Exercise 6 Solution

19

2011 REU Root Tutorial @ Duke Jen Raaf

Another way to read in your data
root [0] TCanvas *jen = new TCanvas(“jen”,”Test Canvas”,500,500);
root [1] TH1F *frame = (TH1F *)jen->DrawFrame(1930,0.0,2015,100.0);
root [2] frame->SetTitle(“Crude Oil Prices”);
root [3] frame->GetXaxis()->SetTitle(“Year”);
root [4] frame->GetYaxis()->SetTitle(“Cost ($US/barrel)”);
root [5] TGraph *mygraph = new TGraph(“input.txt”);
root [6] mygraph->Draw();
root [7] mygraph->Draw(“p”);

20

2011 REU Root Tutorial @ Duke Jen Raaf

Homework

Learn how to define a 1-dimensional function (TF1).
Make one that is sin(x)/x and draw it.

21

2011 REU Root Tutorial @ Duke Jen Raaf

Next Time...

TF1
Fitting

22

2011 REU Root Tutorial @ Duke Jen Raaf

Extra

23

2011 REU Root Tutorial @ Duke Jen Raaf

Interactive ROOT uses a C++ interpreter (CINT) which allows (but does not require)
you to write pseudo-C++
 Be careful! This will make your programming much more difficult later in life!
 It's best if you try to use standard C++ syntax, instead of the CINT shortcuts.

ROOT CINT syntax allows the following sloppy things:
 “.” and “->” are interchangeable
 “;” is optional at the end of single commands
 Many commands may be accessed interactively (point and right-click in plots)

Don’t be sloppy!

Warning...

24

2011 REU Root Tutorial @ Duke Jen Raaf

Quitting!

Possibly the most asked question from new ROOT users is “How do I quit?!?!?”
The answer (which you’d never guess in a million years): “.q”

And if it’s stuck doing something and won’t pay attention to you, start adding extra “q”s!
.q (quit)
.qqq (Quit, I mean it!)
...
.qqqqqq (HEY! I SAID QUIT!)
.qqqqqqq (QUIT RIGHT NOW, OR ELSE!)

25

