Ed Kearns Boston U. Super-K

Review of Proton Decay Results

Generalities: experiments, some world limits

 $e^+\pi^0$: the prototypical decay mode

K⁺v: trickier techniques

Summary of Super-K limits and final comment

Nucleon Decay Experiments

Fiducial Mass

tracking detector	NUSEX (1982)	130 t	Fe/streamer
	KGF (1980)	140 t	Fe/prop. tube
	Frejus (1984)	700 t	Fe/flash chamber
	Soudan (1981)	770 t	Fe/drift tube

Kamiokande (1983) 1040 t 2700 mwe, 1000 50-cm pmts, 20% photocathode coverage outer veto, solar neutrinos IMB (1982) 3300 t water 1580 mwe, Cherenkov 2048 20-cm PMTs, low photocathode coverage augmented by wls plates, pre-SK: largest, best proton decay limits Super-K (1996) 22500 t more on this detector shortly

Nucleon Decay Limits antilepton + meson

More Nucleon Decay Limits non-traditional and new

τ/B ((10 ³⁰	years)
-------	-------------------	-------	---

Radiative decays:

$p \rightarrow e^+ \gamma$	7300	Super-K preliminary
$p \rightarrow \mu^+ \gamma$	6100	Super-K preliminary
$n \rightarrow \nu \gamma$	39	IMB

Once suggested for atmospheric V anomaly (Mann 1992):

"Invisible" mode:

$n \rightarrow \nu \nu \nu$.00049	Kamiokande
		(use 22-35 MeV nuclear de-excitation)

B-L violating modes and di-nucleon decay (Frejus limits):

$n \rightarrow e^+ e^- v$	74	∆(B-L)=2 ∆B=1
$p \rightarrow \mu^{+} \pi^{+} K^{+}$	5.4	∆(B-L)=2 ∆B=1
$pn \rightarrow e^+ n$	100	∆(B-L)=0 ∆B=1
$pn ightarrow \pi^0 \pi^0$	3.4	∆(B-L)=2 ∆B=2
$pp \rightarrow e^+ e^+$	5.8	∆(B-L)=0 ∆B=2

Inclusive decays:

 $p \rightarrow \mu^+$ anything 12

M.Cherry et al. (Homestake)

New decay modes (Applequist, Dobrescu et al. hep-ph/0107056):

 $p \rightarrow e^{-} \pi^{+} \pi^{+} \nu \nu$ $n \rightarrow e^{-} \pi^{+} \nu \nu$ $p \rightarrow \mu^{+} e^{+} \pi^{-} \nu \nu$

tracking iron tracking calorimeter

Soudan Mine (Minnesota), 2100 m.w.e., 770 ton (fiducial) 1 cm spatial resolution with dE/dx sampling

suitable for: non-relativistic particles (K⁺) high final state multiplicities

however: greater intranuclear scattering than water smaller in size due to cost and complexity

Soudan 2 proton decay M.C.

Super-Kamiokande

water Cherenkov detector 1 km deep (2600 m.w.e.) 11000 50-cm PMTs ~2 ns timing resolution 40% photocathode coverage outer detector veto ex-IMB 22.5 kton fiducial mass \Rightarrow 7.5 x 10³³ protons \Rightarrow 6.0 x 10³³ neutrons

Proton Decay Students:

M.Earl, S.Hatakeyama, Y.Hayato J.Kameda, M.Kirisawa, K.Kobayashi M.Shiozawa, B.Viren

Signal and Background Monte Carlo

Characterize Accuracy of Monte Carlo Simulation

 $p \rightarrow K^+ v$

Favored SUSY decay mode

Note: Also $p \rightarrow \pi^+ v$ in some circumstances (Strassler and Babu, see also Goto and Nihei). Also $\mu^+ K^0$, Babu, Pati & Wilczek

Momentum of K+ is 340 MeV/c: below Č-threshold

$K^+ \rightarrow \mu^+$ (236 MeV/c) ν search

 $\tau/B(p \rightarrow vK^+) > 4.4 \times 10^{32} \text{ yr}$

Gamma Tag for $p \rightarrow v K^+$

Nuclear Shell Model: ${}^{16}O\ (p_{3/2}) \rightarrow {}^{15}N^*$ + proton hole de-excites by 6.3 MeV gamma

ENERGY & DEEXCITATION SCHEME OF (jp)"

FIG. 2. Level scheme of proton-hole states in ${}^{151}N$ and their deexcitation modes. Energies are given in units of MeV. p^* and n^* are the protons and neutrons emitted from the continuum (unbound) region, respectively.

H.Ejiri Phys. Rev. C48 (1993) 1442

Coincidence signature: proton decay to K^+n accompanied by prompt γ K^+ is below Cherenkov threshold: no light followed by K^+ decay to $\mu^+\nu \sim 12$ ns later followed by muon decay to electron ~ 2 ms later

$K^+ \rightarrow \mu^+$ (236 MeV/c) ν search with gamma tag

count PMT hits in 12-ns sliding window *preceding* light from muon B.R. x efficiency = 8.8%

$K^+ \rightarrow \pi^+ \pi^0$ search

momentum of π + is only 205 MeV/c: barely above Cherenkov threshold

require 1 decay electron, π^0 mass

background estimate ~2.3 events/100 kt·yr

For final limit: combine all three results (they are independent)

Super-Kamiokande

Run 7944 Sub 203 Ev 27128713 99-10-12:23:00:23 Inner: 1572 hits, 2794 pE Outer: 3 hits, 3 pE (in-time) Trigger ID: 0x07 D wall: 200.2 cm FC, mass = 141.3 MeV/c²

Resid(ns)

- > 114
- 100- 114
- 85-100
- 71- 85
- 57- 71
- 42- 57
- 28- 42
- 14- 28
- 0- 14
- -14- 0
- -28- -14
- -42- -28
- -57- -42
- -71- -57
- -85- -71
- < -85

Forward-backward hemisphere view of PMT hits as seen from reconstructed vertex

> backwards Cherenkov light cone

(only hits in time window drawn)

expect only small amount of light outside backwards cone

Summary of Super-K Limits

mode	exposure (kt• yr)	ε Β _m (%)	observed event	B.G.	τ/B limit (10 ³² yrs)
$p \rightarrow e^+ + \pi^0$	79	43	0	0.2	50
$\mathbf{p} \rightarrow \mathbf{u^+} + \pi^0$	79	32	0	0.4	37
$\mathbf{p} \rightarrow \mathbf{e^+} + \mathbf{n}$	45	17	0	0.3	11
$\mathbf{p} \rightarrow \mathbf{u}^{\dagger} + \mathbf{n}$	45	12	0	0	7.8
$\mathbf{n} \rightarrow \overline{\mathbf{v}} + \mathbf{n}$	45	21	5	9	5.6
$\mathbf{p} \rightarrow \mathbf{e}^{\dagger} + 0$	61	6.8	0	0.6	6.1
$\mathbf{p} \rightarrow \mathbf{e}^{\dagger} + \mathbf{\omega}$	61	3.3	0	0.3	2.9
	70	74	0	0.4	70
$\mathbf{p} \rightarrow \mathbf{e}_{\mathbf{+}} + \gamma$	70	/1	0	0.1	73
$\mathbf{p} \rightarrow \mu^{+} + \gamma$	70	60	0	0.2	61
$\mathbf{p} \rightarrow \overline{\mathbf{v}} + \mathbf{K}^{+}$	79				16
Κ ⁺ →νμ ⁺ (sp	pectrum)	33			4.4
prompt γ +	μ+	8.8	0	0.5	10
$\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0}$		6.8	1	1.7	5.9
$\mathbf{n} \rightarrow \overline{\nu} + \mathbf{K^0}$	79				3.0
$\mathbf{K^0} \rightarrow \pi^0 \pi^0$		9.6	25	33.8	3.2
$\mathbf{K}^{0} \rightarrow \pi^{\dagger} \pi^{\dagger}$		4.6	10	6.7	1.1
$\mathbf{p} \rightarrow \mathbf{e^+} + \mathbf{K^0}$	70				5.4
$K^{0} \rightarrow \pi^{0} \pi^{0}$ $K^{0} \rightarrow \pi^{\mathbf{+}} \pi^{\mathbf{-}}$		11.8	1	1.4	8.8
2-ring		6.2	6	1.0	1.5
3-ring		1.4	0	0.2	1.4
$\mathbf{p} \rightarrow \mu^{+} + \mathbf{K}^{0}$	70				10
$\mathbf{K}^{0} \rightarrow \pi^{0} \pi^{0}$ $\mathbf{K}^{0} \rightarrow \pi^{\mathbf{+}} \pi^{\mathbf{-}}$		6.1	0	1.1	6.2
2-ring		5.3	0	1.5	5.4
3-ring		2.8	1	0.2	1.8

Final Comments:

Proton decay searches have been negative so far ... it's a good thing that supernova, neutrino oscillations, etc. helped us pass the time.

Past experiments and Super-K have set severe constraints on viable GUTs. Minimal SU(5), minimal SUSY SU(5) are dead. New models must struggle with these limits.

Unfortunately, there is **no experimental hint of any sort** for which decay modes the next generation experiments should concentrate on. So far.

Super-K has set strong limits on the most "popular" modes. But there is a lot of work to comprehensively test the conservation of baryon number.