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Major Professor: Edward T. Kearns, Professor of Physics

ABSTRACT

Dinucleon decay is the simultaneous decay of two nucleons bound within the

same nucleus. This dissertation describes a search for dinucleon decay into kaons

via 16O(pp) → 14C K+ K+ using the first 91.7 kiloton · years of data collected by

the Super-Kamiokande water Cherenkov detector. This is an interesting alternative

to single proton decay because the process violates only baryon number, not lepton

number; single proton decay violates both. In a supersymmetric framework, dinucleon

decay into kaons is predicted to be the most sensitive experimental search that can

probe the magnitude of the R-parity violating parameter λ′′
uds.

The complex signature of the signal required the creation of several new event

reconstruction techniques, including tools for fitting Cherenkov rings produced by

charged kaons, a multiple vertex fitter for assigning a unique vertex to each ring,

and a ring classification algorithm that incorporated the overall event topology. An-

other technique new to the Super-Kamiokande collaboration was the use of a boosted

decision tree, which was utilized in the final stage of the analysis.

No signal event candidates were found in the data. Monte Carlo studies predicted

a background of 0.28 ± 0.19 events induced by atmospheric neutrino interactions,

and a signal detection efficiency of 12.6% ± 3.2%. Based on these results, the first
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experimental lower limit on the dinucleon partial lifetime for the decay mode p p →

K+ K+ has been placed at 1.7×1032 years at 90% confidence level. This is about two

orders of magnitude better than the only other dinucleon lifetime limits on record,

made by the Frejus experiment, which include only decays with final state pions or

leptons.

The lifetime limit may be interpreted as an upper limit of 7.8 × 10−9 on λ′′
uds.

This new experimental limit is more restrictive than the limit of ∼ 10−7 estimated

by J.L. Goity and M. Sher in their paper “Bounds on ∆B = 1 couplings in the

supersymmetric standard model” (Phys. Lett. B 343:1-2, 1995), which was based on

typical nucleon and dinucleon lifetime limits of ∼ 1030 years.
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Chapter 1

Introduction

On a long enough timeline, the survival rate for everyone drops to zero.

–Chuck Palahniuk

Though Mr. Palahniuk’s words certainly hold true for people, it remains a mystery

as to whether or not his maxim can be applied equally well to protons. Protons have

never been observed to decay. So far.

The age of the Universe and the very existence of life on Earth say that the

proton must be stable up to at least cosmological time scales in order for the complex

structure that is observed in the Universe to have arisen and continue to exist to this

day. This begs the question: If the proton lifetime is (at least) cosmologically long,

how can it possibly be measured experimentally? The answer lies in the fact that

protons are indistinguishable from one another, thus statistically identical. So the

measured lifetime will scale with the product of the number of target protons and the

amount of time that they are observed. Thus one need not observe a single proton

for an inhumanly long time, one need only observe a large collection of protons for

an experimentally reasonable amount of time. This principle is the crux of the basic

1
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methodology employed by large-scale detectors such as Super-Kamiokande.

The Super-Kamiokande water Cherenkov detector and its direct predecessors,

Kamiokande [2] and IMB [3], have a long history of probing for physics beyond the

Standard Model through searches for various modes of nucleon decay [4–7]. The

target volume of water, or fiducial volume, in the center of the Super-Kamiokande

tank contains 22.5 kilotons of ultra-pure water, which corresponds to about 7.4×1033

protons. As suggested previously, it is important that this number be as large as

possible, because the sensitivity to the lifetime of the proton scales directly with the

number of protons under observation. The detector is also used for studies of neutrino

oscillations, for which it is also important to have a large target volume in order to

increase the neutrino interaction rate.

One of the most impressive feats accomplished by large-scale water Cherenkov

detectors was to decisively rule out one of the earliest and simplest GUTs, minimal

SU(5), proposed by Georgi and Glashow [8] in 1974. IMB [3] and Kamiokande [2]

accomplished this by searching for evidence of single proton decay via the mode

p → e+π0. That reaction is predicted by minimal SU(5) to occur at a rate that would

yield a proton lifetime of 1031±1 years [9, 10]. IMB and Kamiokande were able to

set a lower limit on the proton lifetime that was greater than the SU(5) prediction.

Super-Kamiokande has since set even longer limits on the lifetime of this decay. The

current limit set by Super-Kamiokande is in excess of 1034 years [11]. This limit is

two orders of magnitude larger than the upper bound predicted by SU(5).

This dissertation describes a search for evidence of dinucleon decay, which is the

simultaneous decay of two nucleons bound within the same nucleus. One could imag-

ine such a reaction being mediated by the inter-nucleon exchange of a heavy, non-

standard particle. Only a few experiments have previously searched for dinucleon

decay: Frejus, DAMA, and the BOREXINO Counting Test Facility (CTF).
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The Frejus detector is a 900 ton tracking iron calorimeter located beneath the alps

in France near the town of Frejus. The Frejus collaboration searched for dinucleon

decay modes involving final state pions or leptons (e.g., pp → π+π+, pp → e+e+).

They did not, however, search for modes involving final state kaons. Their limits for

pion and lepton dinucleon decay modes are the only such limits on record, and are

on the order of 1030 years [12].

DAMA [13] and the BOREXINO CTF [14] are both liquid scintillator detectors

located in Gran Sasso, Italy. Both experiments have searched for dinucleon decay

into neutrinos or invisible modes by looking for the radioactive decay of an excited

nucleus that would be left behind after the disappearance of two nucleons. Frejus [15]

was also able to search for the neutrino modes by using the Earth as a target volume

and looking for neutrino interactions in their detector at the correct energy. All three

experiments had comparable limits, and the current neutrino and invisible dinucleon

decay mode limits are on the order of 1025 years [12].

In this dissertation, the first 91.7 kiloton · years of data taken by the Super-

Kamiokande water Cherenkov detector are analyzed in the first experimental attempt

to find evidence for dinucleon decay into kaons.

If dinucleon decay into kaons were discovered, it would provide the first evidence

for baryon number violation. This would be very interesting because baryon number is

a conserved quantity in the Standard Model. Thus dinucleon decay into kaons would

provide clear evidence for physics beyond the Standard Model. Another reason that

it would be interesting is that baryon number violation is one of the three Sakharov

conditions required to explain the matter/anti-matter asymmetry of the Universe [18]

Dinucleon decay into kaon modes is also interesting in the context of supersymme-

try, in that the corresponding diagram for the decay requires the presence of baryon

number violating interaction vertices, characterized by the coupling parameters λ′′
ijk
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(where i, j, and k are generation indices) which are forbidden under R−Parity.

Thus, the positive detection of dinucleon decay into kaons could provide evidence

for R−Parity violation. If one of the λ′′
ijk were shown to be non-zero, it could have

important implications in certain supersymmetric models, potentially reducing the

required amount of fine tuning by allowing a lighter bound on the Higgs mass [19].

It has been suggested that a search for dinucleon decay into kaons via p p → K+ K+

(the mode studied in this analysis) would be the most sensitive experimental probe

of the magnitude of one of the λ′′
ijk parameters, λ′′

112 [20–22].

There are several key differences between this particular search and the more

conventional single nucleon decay searches, such as p → e+π0. The first is that the

p p → K+ K+ signal included Cherenkov ring patterns created by charged kaons,

which were ejected from the parent nucleus at momenta above Cherenkov threshold.

The second difference is that the signal events all had multiple secondary vertices

due to the subsequent decay of the kaons, separated by distances resolvable by the

detector. These first two distinct features necessitated the development of a new

Cherenkov ring reconstruction method able to fit a unique vertex to each ring in an

event. This multiple vertex fitter is described in detail in Section 7.2.

The next key difference is that this search incorporated event topology in the parti-

cle type classification process, which is a technique that has never been incorporated

in a Super-Kamiokande analysis before. Typically, a likelihood analysis predicting

whether a given ring was produced by an electromagnetic showering particle (i.e., e±

or γ) or non-showering particle (e.g., p, K±, π±, µ±) is sufficient for particle identifi-

cation. However, in the case of the p p → K+ K+ signal, this method alone would not

allow one to distinguish charged kaon rings from muon rings produced by the decay

of the kaons via the highest branching ratio decay mode K+ → µ+ν. Thus the unique

event topology of the signal was exploited and compared side-by-side with other ring-
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specific reconstructed variables, such as the reconstructed momentum, reconstructed

Cherenkov angle, etc., in order to classify the rings in an event.

The final key difference between this search and searches for single nucleon decay

is that this search scanned over a very large number of discriminating variables,

spanning several event categories by incorporating multivariate analysis techniques.

Unlike single nucleon decay, a reasonable signal efficiency to background ratio could

not be achieved by simply looking at a few variables alone, such as the invariant mass

and total momentum of the original (di)nucleon decay products. While these two

variables were taken into consideration, many other useful discriminatory variables

were also considered, such as variables describing the event geometry, the overall

symmetry of the event, the kaon decay products, and the goodness (or badness, as it

were) of fitting the event using a single vertex hypothesis. Though this was not the

first study from Super-Kamiokande to use multivariate analysis techniques (artificial

neural networks have been used before [23]), this was the first study to utilize a

boosted decision tree to analyze Super-Kamiokande data.



Chapter 2

Motivation and Theory

There are several motivations behind this search for dinucleon decay into kaons.

One motivation is simply that such reactions are allowed by the conservation of en-

ergy, momentum, angular momentum, and charge, and have never been searched for

before. A more interesting motivation is that the observation of dinucleon decay

would provide evidence for baryon number violation. Baryon number (along with

lepton number) is a conserved quantity in the Standard Model 1, and has never been

observed before.

To give this some context, other discrete symmetries once thought to be inviolate

have been found not to hold in certain sectors, such as the symmetry of parity.

Following the suggestions of Lee and Yang [16], Wu (amongst others) found evidence

for parity violation in an experiment that measured the direction of electrons emitted

by the beta decay of 60Co relative to the direction of spin of the polarized cobalt

atoms [17]. The results of the experiment showed that parity is violated through the

weak interaction, and this discovery brought about a veritable paradigm shift in the

world of physics.

1An exception to baryon and lepton number conservation arises in non-perturbative electroweak
effects at very high energies [24].

6
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Such historical precedents make it seem plausible that baryon number may also

not constitute an exact symmetry. This would be fascinating to discover in and

of itself, but it could also provide insight into the matter-antimatter asymmetry of

the Universe. Sakharov proposed three conditions that, if satisfied, could explain

the matter-antimatter asymmetry, one of which is the non-conservation of baryon

number [18].

Though no evidence has ever been found for ∆B = 1 baryon number violation

through nucleon decay modes studied at Super-Kamiokande or elsewhere (e.g., p →

e+π0, or p → K+ν), this does not preclude that a ∆B = 2 interaction could not

take place. Hence, a search for dinucleon decay into kaons is in fact complimentary

to searches for single proton decay in terms of seeking evidence for baryon number

violation.

Another motivating factor is that searches for dinucleon decay into any purely

mesonic state, such as kaons, provides an interesting experimental alternative to

searches for single nucleon decay, in that the former does not violate lepton number,

yet the latter must in order to conserve angular momentum.

Protons are fermions, which means that they have odd spin. If they decay, they

must decay into at least two lighter particles in order to conserve energy and momen-

tum. The only known particles that are lighter than the proton are the leptons (with

the exception of τ , mτ = 1.8 GeV/c2) and certain mesons, such as pions. Leptons are

fermions (odd spin), and mesons are bosons, which have even spin. This means that

any viable proton decay mode must include an odd number of leptons in order to

conserve angular momentum. Typical experimental searches focus on decay modes

such as p → e+π0. A two-nucleon system has even spin, however, and therefore does

not require any leptons in the final state (though an even number of leptons would be

conceivable). From the perspective of angular momentum conservation, it is perfectly
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reasonable to imagine a two-nucleon system decaying purely mesonically.

Additionally, observation of dinucleon decay into kaons could have interesting

implications in a supersymmetric framework. Supersymmetry (SUSY) represents a

large family of Grand Unified Theories (GUTs) that attempt to unify the strong,

weak, and electromagnetic forces. One distinguishing characteristic of SUSY is the

introduction of superpartners to the known particles of the Standard Model (SM). The

superpartners have the same quantum numbers as their corresponding SM partners

(e.g., color, electric charge, and hypercharge), but have the opposite spin state.

Under supersymmetry, SM fermions have bosonic superpartners, and SM bosons

have fermionic superpartners. The nomenclature for the superpartners adds an ‘s’

to the beginning of the name of the particle’s corresponding SM partner. The su-

perpartners are symbolically denoted with a tilde placed over the corresponding SM

partner symbol. For example, a Standard Model fermion such as the up quark, u, is

given a scalar superpartner called the sup, denoted as ũ.

In the minimal supersymmetric Model (MSSM), the number of superpartners pro-

duced or annihilated in a given reaction must conserve a symmetry called R−Parity.

SM particles are assigned an R−Parity of +1, and their superpartners are assigned

an R−Parity of −1. The R−Parity value of a particle, PR, is calculated as:

PR = (−1)2S(−1)3B+L, (2.1)

where S is its spin, B is its baryon number, and L is its lepton number.

R−Parity is a symmetry introduced to the MSSM in order to remove a select

group of operators from the superpotential that is allowed by all gauge symmetries.

The terms in the superpotential, W , prohibited under R−Parity are:
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W ⊃ µiLiH̄ + λijkLiLjE
C
k + λ′

ijkLiQjD
C
k + λ′′

ijkU
C
i DC

j DC
k , (2.2)

where L, EC , H̄ , Q, UC , and DC are lepton doublet, lepton singlet, up-type Higgs,

quark doublet, up-type quark singlet, and down-type quark singlet superfields. µ, λ,

λ′, and λ′′ are the coupling strengths. The ijk indices are generation indices, and

gauge indices have been suppressed. The first three terms violate lepton number, and

the final term violates baryon number.

Without their removal through the introduction of R−Parity, the terms in Equa-

tion 2.2 would allow fast proton decay to occur via the diagram shown in Fig. 2.1, or

one very similar. The lifetime of the proton would scale as:

τ

B.R.p→e+π+

∼ 1

m5
p

∑

i=2,3

m4
d̃i

/|λ′
11iλ

′′
11i| < 1 sec (2.3)

where mp is the proton mass, λ′ and λ′′ are the R−Parity violating couplings, assumed

to be of order unity, and md̃i
, are the squark masses, assumed to be of order 1 TeV [25].

Such a disastrously small prediction for the proton lifetime would ruin the relevance

of the model.

It should be noted here that the diagram shown in Fig. 2.1 does not provide the

motivation behind the experimental searches for p → e+π0 at experiments like Super-

Kamiokande. Such searches are primarily motivated by different decay mechanisms

allowed by different models, such as SU(5).

Now, if either the baryon number violating term or the lepton number violating

terms barred by R−Parity were allowed to exist in the model, the proton lifetime

would still be protected. A decay channel like that of Fig. 2.1, for example, would

not be permitted. Any proton decay mode must violate baryon number, as protons

are the lightest baryons, but recall that an odd number of leptons are required in the
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u

d

u

p

π
0

λ
′′

ū

u

e+

λ
′

s̃

Figure 2.1: Feynman diagram for fast proton decay via p → e+π0 in a supersymmetric
framework without R−Parity. There is one lepton number violating interac-
tion vertex, λ′, and one baryon number violating interaction vertex, λ′′, in the
diagram.

final state in order to preserve angular momentum, thus lepton number must also

be violated. Therefore a model which does not provide both a mechanism to violate

baryon number and a mechanism to violate lepton number will not allow single proton

decay to occur.

It has been noted by Carpenter, Kaplan and Rhee that in certain supersymmet-

ric models which allow either baryon number violation or lepton number violation

through the R−Parity violating couplings (but not both baryon number and lepton

number violation) a lighter bound on the Higgs mass could be allowed, which in turn

could reduce the amount of fine tuning required in the model [19]. This study is

concerned with the models in which the baryon number violating coupling, λ′′
ijk, is

allowed to be non-zero. If such were the case, one would expect dinucleon decay into

kaon modes to arise through a channel such as that shown in Fig. 2.2. In this diagram,

the λ′′
112 = λ′′

uds coupling appears twice. Analogous diagrams exist for p n → K+ K0

and n n → K0 K0. And because dinucleon decay into kaons does not say anything

about lepton number violation, evidence for the signal could potentially be consistent

with—and perhaps even hint at the existence of—one of these R−Parity violating,
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reduced fine tuning SUSY models.

u

d

u

u

d

u

u

s̄

s̄

u

g̃

ũ

ũ

p

p

K+

K+

λ
′′

uds

λ
′′

uds

Figure 2.2: Feynman diagram for pp → K+K+ in a supersymmetric framework. There
are two λ′′

uds interaction vertices in the diagram.

Yukawa terms in the Lagrangian, L, are derived from the superpotential, W , by

the relation:

L = −1

2

(

δ2W

δAiδAj
Ψ̄iΨ̄j + H.C.

)

, (2.4)

where Ai,j are scalar fields, Ψ̄i,j are fermion fields, and H.C. represents the Hermitian

conjugate [26]. This gives a Lagrangian term for the ∆B = 1 R−Parity violating

term:

LUC
i DC

j DC
k

= −1

2
λ′′

ijk(ũ
∗
iRd̄jRdC

kL + d̃∗
kRūiRdC

jL + d̃∗
jRūiRdC

kL) + H.C., (2.5)

where ijk again represent generation indices, ū and d̄ are anti-up and anti-down-type

quark fields, ũ and d̃ are superpartner up and down-type fields, and dC is a down-type
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singlet field [27].

The coupling λ′′
ijkU

C
i DC

j DC
k requires that the last two fields, DC

j and DC
k , have

different generations (i.e., j 6= k). This happens because the suppressed color indices

are combined anti-symmetrically, but the superfields themselves commute. Thus if

DC
j and DC

k were swapped and j were equal to k, then the coupling would have to

be equal to −1 times itself, which would be impossible unless it were 0. Thus the

introduction of a second generation field is necessary, explaining why the coupling

violates strangeness by one unit.

For this reason a search for final state kaon dinucleon decay modes, such as p p →

K+ K+ are sensitive to the R−Parity violating SUSY parameters λ′′
ijk, but final state

pion modes, such as pp → π+π+, are not. A similar argument explains why minimal

SUSY SU(5) favors the single proton decay mode p → K+ν̄, but not p → π+ν̄ (though

in that case R−Parity violation is not required).

Many limits on the R−Parity violating λ′′
ijk coupling constants come from exper-

iments that can only measure a limit on a product of at least two different λ′′
ijk, or a

product of one λ′′
ijk with one of the other R−Parity violating coupling constants. A

summary of experimental constraints on these parameters is given in [27, 28]. Dinu-

cleon decay into kaons, however, would be sensitive to a single coupling alone, λ′′
uds,

and has been reasoned to be the most sensitive means of experimentally probing the

magnitude of the coupling λ′′
uds [20–22].

An upper limit on λ′′
uds has been estimated based on typical experimental limits

on nuclear lifetimes from single nucleon decay experiments and the Frejus limits on

lepton pion dinucleon decay modes. Goity and Sher used an approximate figure of

∼ 1030 years as the lower lifetime limit for dinucleon decay into kaons, and calculated

an upper limit on the magnitude of λ′′
uds to be 10−7. Appendix C.2 explains the

calculation of the upper limit on λ′′
uds as obtained by a lower limit on the p p →
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K+ K+ partial lifetime. It is the goal of this dissertation to conduct a more sensitive,

direct search for dinucleon decay into kaons in order to provide evidence for dinucleon

decay, or to set a more authoritative experimental bound on the R−Parity violating

parameter λ′′
uds.



Chapter 3

Experimental Apparatus

3.1 Super-Kamiokande Detector Overview

Super-Kamiokande is a large water Cherenkov detector located about 1 km be-

neath the peak of Mt. Ikenoyama in the Mozumi zinc mine near the town of Kamioka

in the Gifu prefecture of Japan. Figure 3.1 shows a schematic drawing of the detector

and its surrounds.

The overburden of rock is roughly equivalent to 2700 m of water shielding, lowering

the flux of cosmic ray muons to about 6 × 108 cm −2 s −1sr−1. The resultant muon

event rate is five orders of magnitude lower than at that the surface of the earth.

Super-Kamiokande is filled with 50 kilotons of ultra-pure water, making it the largest

detector of its kind in the world.

Data taking began at Super-Kamiokande in April 1996 and continued for five years

until a scheduled shutdown for maintenance and upgrading in July 2001. This initial

five year period of data taking is referred to as Super-Kamiokande I, or simply SK-I.

Regrettably, during the shutdown an accident occurred which required a significant

alteration of the detector for the next data taking period, SK-II, reducing the number

14
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Figure 3.1: The Super-Kamiokande detector [1].

of ID PMTs to about half that of original design. The SK-II data taking period began

in October 2002 and lasted for three years, ending in October 2005. The detector

has since been restored to full PMT capacity beginning with the SK-III data taking

period, which began in July 2006. This thesis is concerned only with data taken during

the SK-I period, corresponding to 1489.2 days of livetime and 91.5 kiloton · years of

exposure.

3.2 Structure

The water containment structure of Super-Kamiokande is a stainless steel, cylin-

drical water tank oriented in an upright position. It has a full diameter of 39.3 m and a
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height of 41.4 m. The tank is optically segmented into two separate regions: a smaller

concentric cylinder called the Inner Detector and the region between the outer walls

of the tank itself and the outside of the support structure, called the Outer Detector.

These regions are physically separated from one another by a 55 cm thick stainless

steel support structure on which the photomultiplier tubes are mounted. The two

regions have been optically isolated from one another by covering the support struc-

ture with a plastic black sheet. Figure 3.2 illustrates how the photomultiplier tubes

are arranged on the support structure.

8" PMT

Tyvek

20" PMT

Bottom

Barrel

Top

Black sheet

Figure 3.2: Support structure for mounting photomultiplier tubes [1].

3.2.1 Inner Detector (ID)

The Inner Detector (ID) is a cylinder 33.8 m in diameter and 36.2 m tall, concentric

to the full Super-Kamiokande tank. It contains 32 kilotons of ultra-pure water. For
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SK-I, the ID is instrumented with 11,146 inward facing 20-inch photomultiplier tubes

arranged in a uniform grid-like pattern. Roughly 40% of the ID wall surface is thus

photosensitive.

3.2.2 Outer Detector (OD)

The Outer Detector (OD) is a 2 m thick region surrounding the Inner Detector on

all sides. It is instrumented with 1,885 outward facing 8-inch photomultiplier tubes.

Each of the OD PMTs is embedded in the center of a 60 × 60 cm 2 wavelength shifting

plate to increase the effective photosensitive area. The OD is used to veto cosmic

ray muon events and tag partially contained physics events. It also acts as a shield

against radioactivity in the rock surrounding the detector. White Tyvek lines the

walls of the OD to maximize reflection, thus increasing efficiency in detecting and

identifying cosmic rays and partially contained events.

3.3 Cherenkov Radiation

The process by which Super-Kamiokande observes and reconstructs particle physics

events is through the detection and interpretation of Cherenkov radiation. Cherenkov

radiation is the light emitted by a relativistic charged particle as it travels through a

medium while its speed remains above that of light in the given medium.

In the case of Super-Kamiokande the medium is pure water, which has an index

of refraction n = 1.33. The requirement for a charged particle to produce Cherenkov

radiation in Super-Kamiokande is:

β >
1

n
= 0.75, (3.1)
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θ
c/n

v > c/n

Figure 3.3: An illustration of Cherenkov radiation.

where β = v/c, v being the magnitude of the particle’s velocity and c being the speed

of light in vacuum. This can be re-expressed in terms of more practical quantities as:

p > 1.14 × m/c, (3.2)

where p is the particle’s momentum, m is the particle’s mass, and c is the speed of

light in vacuum.

The Cherenkov light is emitted at an acute angle relative to the particle’s mo-

mentum vector. This produces a cone-like projection forward along the particle’s

direction of travel, as illustrated in Fig. 3.3. The cone’s half-opening angle, referred

to as the Cherenkov angle θC, is dependent upon the particle’s relativistic speed, β,

as such:

cos(θC) =
1

nβ
. (3.3)

If a particle is highly relativistic such that β ≃ 1, then its Cherenkov angle will

be maximal, θC ≃ 42◦. This is almost always the case for extremely light particles

(i.e., electrons and positrons) produced in particle physics events of the type studied
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at Super-Kamiokande. More massive particles (e.g., charged kaons) tend to produce

“collapsed” cones with smaller Cherenkov angles at typical Super-Kamiokande energy

scales.

The spectrum of light emitted by a Cherenkov radiating particle is given by the

following formula:

d2N

dxdλ
=

2πα

λ2

(

1 − 1

n2β2

)

, (3.4)

where λ is the wavelength of light, x is the distance traveled by the particle, and α is

the fine structure constant. In the sensitive region of the photomultiplier tubes used

in the Super-Kamiokande detector (300–600 nm), roughly 340 photons are emitted

per centimeter traversed by the particle. Figure 3.4 shows the relative spectrum

of Cherenkov light in pure water is covered well by the sensitive range of Super-

Kamiokande’s photomultiplier tubes.

Figure 3.4: Relative spectrum of Cherenkov light in pure water and quantum efficiency of
the 20-inch ID photomultiplier tubes [29].
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The Cherenkov light that is produced by charged particles in an event at Super-

Kamiokande travels through the water with little attenuation until it finally reaches

the wall of the ID. There the photomultiplier tubes collect the light and convert it

into an electronic signal which is interpreted as a “hit”. The Cherenkov light cones

produce ring-shaped hit patterns when projected onto the wall, and from these ring

patterns one is able to count the number of charged particles produced in an event, as

well as discern some other crucial information about each of those particles. Figure 3.5

shows an example of a Super-Kamiokande event display.

NUM            4
RUN         9000
SUBRUN       396
EVENT   64753459
DATE  **-Jul-15
TIME   13:41:42
TOT PE:    3858.0
MAX PE:    24.0
NMHIT :  1456
ANT-PE:    25.4
ANT-MX:     4.2
NMHITA:    30

ID

OD

Figure 3.5: Example of an event at Super-Kamiokande using an “unrolled” event display.
The circular regions at the top and bottom represent the top and bottom
endcaps, respectively. The horizontal rectangle in the middle represents the
unrolled side walls of the barrel. Each tiny circle represents a hit PMT, where
the size of the PMTs circle is proportional to the amount of charge observed
by that PMT. The smaller display in the corner shows the activity in the OD.
Here, a single ring has been produced by a muon. The hits outside of the ring
are from scattered and reflected light.
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The momentum of the particle is roughly proportional to the total amount of light

in the ring it produced. One may distinguish between an electromagnetic showering

type particle (i.e., an electron, positron, or gamma) and a more massive particle

(e.g., a charged kaon or a muon) by taking note of the relative sharpness of the outer

edge of the ring. A showering type particle will produce a fuzzier ring pattern than

a non-showering type. Particle vertex positions may also be reconstructed by taking

note of the timing of each of the PMT hits as well as their position relative to one

another and relative to the fixed geometry of the tank.

3.4 Photomultiplier Tubes

3.4.1 Inner Detector Photomultiplier Tubes

The 20 inch diameter photomultiplier tubes (PMTs) used in the ID during the SK-

I experimental period were originally developed specifically for Super-Kamiokande by

the Hamamatsu Corporation. Figure 3.6 shows a schematic drawing of the ID PMT.

These PMTs were designed to have a large photosensitive area, a good timing res-

olution, the ability to detect a single photo-electron, and long term stability. The

“Venetian blind” dynode was adjusted to improve timing resolution and photon col-

lection efficiency, ultimately achieving a timing resolution of about 2.5 ns. Single

photo-electron peaks can clearly be distinguished from dark noise in the PMT signal.

Figure 3.7 shows the single photo-electron ( p.e.) distribution.

The quantum efficiency of the ID PMTs is shown in Fig. 3.8. The PMTs have

a significant quantum efficiency over the range of roughly 300–600 nm with a maxi-

mum efficiency of 20% at 390 nm wavelength. This range of wavelengths covers the

spectrum of Cherenkov light emitted in pure water quite well. The photocathode of
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Figure 3.6: The 20-inch ID PMT [1].

Figure 3.7: Single p.e. distribution for the 20-inch ID PMT. A single p.e. is equivalent to
about 2 pC at 107 gain. The peak near 0 corresponds to the dark current [1].
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Figure 3.8: Quantum efficiency of the 20-inch ID PMT [1].
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Figure 3.9: Transit time spread for single p.e. equivalent signals in the 20-inch ID PMT.
The spread is interpreted as the timing resolution of the PMT [1].

the PMTs is Bialkali (Sb-K-Cs) for its high sensitivity to Cherenkov light and low

thermionic emissivity. The transit time spread for a 1 p.e. signal is about 2.2 ns,

as shown in Fig. 3.9. The average dark noise rate is around 3 kHz at the threshold

of 1/4 photo-electrons, which is the threshold value used during normal operational

conditions at Super-Kamiokande. A more complete list of specifications for the ID

PMTs is shown in Table 3.1.

The response of the ID PMTs is sensitive to magnetic fields, so it is critical that

the 450mG produced by the geomagnetic field at Super-Kamiokande be reduced.

This is achieved by a system of 26 Helmholtz coils arranged around the detector,

reducing the net magnetic field to approximately 50mG.

3.4.2 Outer Detector Photomultiplier Tubes

The 8 inch diameter PMTs used in the OD during the SK-I experimental period

were model R1408 Hamamatsu PMTs procured from the decommissioned IMB ex-

periment. The photocathodes of the OD PMTs are each fitted with a 60 cm × 60 cm

× 1.3 cm acrylic wavelength shifter plate, increasing the total OD light collection ef-
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Product Name R3600
Shape Hemispherical
Photocathode area 50 cm (20 in) diameter
Window material Pyrex glass (4 ∼ 5mm)
Photocathode material Bialkali (Sb-K-Cs)
Quantum efficiency 22% at λ = 390 nm
Dynodes 11 stage Venetian blind type
Gain 107 at ∼ 2000V
Dark current 200 nA at 107 gain
Dark pulse rate 3 kHz at 107 gain (1/4 p.e threshold)
Cathode non-uniformity < 10%
Anode non-uniformity < 40%
Transit time 90 nsec at 107 gain
Transit time spread 2.2 nsec (1σ) for 1 p.e. equivalent signals
Weight 13 kg
Pressure tolerance 6 kg/cm2 water proof

Table 3.1: Specifications for the 20-inch ID PMT [1].

ficiency by about 50%. The presence of the wavelength shifter plates degrades the

timing resolution of the OD PMTs from 11 ns to 15 ns, but this is still sufficient to

allow the OD to function well as a cosmic ray veto counter.

3.5 Data Acquisition (DAQ) System

3.5.1 Inner Detector DAQ

The front end electronics of the ID DAQ are comprised of custom built Analog

Timing Modules (ATMs), into which are fed the analog signals of the ID PMTs.

The ATMs are housed in Tristan KEK Online (TKO) crates located in the four

outer electronics huts sitting on top of the Super-Kamiokande tank. The ATMs

are responsible for recording and digitizing the arrival time and integrated charge

information of each PMT signal via a 12-bit Analog to Digital Converter (ADC).
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The ATMs each have two separate channels, allowing them to store two successive

PMT pulses when required. This function makes it possible to detect muon-decay

electrons produced by muon decays, and also allows the front end electronics to handle

high rate events that could be generated by nearby supernovae or possibly other rare

phenomena.

Both channels in an ATM consist of a time to amplitude converter (TAC) for

recording the timing information of a PMT pulse, and a charge to analog converter

(QAC) for recording the integrated charge of the pulse. The full time range is 1.6 µs

with a resolution of 0.3 ns. The charge saturation level is 600 pC, which corresponds

to approximately 300 p.e., and the charge resolution is 0.2 pC. Table 3.2 contains a

more complete list of specifications for the ATM.

Number of channels 12 ch/board
One hit processing time ∼ 5.5 µsec
Charge dynamic range ∼ 400 ∼ 600 pC (12-bit)
Timing dynamic range ∼ 1300 nsec (12-bit)
Charge resolution (LSB) 0.2 pC/LSB
Charge resolution (RMS) 0.2 pC (RMS)
Timing resolution (LSB) 0.3 ∼ 0.4 nsec/LSB
Timing resolution (RMS) 0.4 nsec (RMS)
Temperature dependence (QAC) 3 Count/deg. ↔ 0.6 pC/deg.
Temperature dependence (TAC) 2 Count/deg. ↔ 0.8 nsec/deg.
Event number 8 bit
Data size of one hit 6 Byte
FIFO 2 kByte (∼ 340 hits)

Table 3.2: Specifications for the ATM module [1].

Each ATM typically handles 12 PMTs, and there are (with rare exception) 20

ATMs slotted into each TKO crate. Each of the four outer electronics huts is home

to 12 TKO crates. Along with the ATMs, there is a go/no-go (GONG) trigger

control module and a super control header (SCH) in every TKO crate. The SCH
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acts as an interfacing device between the TKO crate and its corresponding super

memory partner (SMP), sending the ATM information to the SMP when a trigger is

received. The SMP sits in a VME crate located within the same hut as the TKO.

The duty of the SMP is to act as a data buffer to be read out by an online computer

workstation. There are two of these workstations in every electronics hut, each of

which is responsible for handling 6 SMP modules (half of the number of SMPs per

hut).
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Figure 3.10: The ID DAQ system [1].

The eight total online computer workstations in the four outer electronics huts all

feed into a ninth online workstation which is located in a smaller central electronics

hut. This workstation assembles all of the accumulated information into events and

then sends those events away to an offline computer system for storage and analysis.

Figure 3.10 shows a schematic of the complete ID DAQ system.
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3.5.2 Outer Detector DAQ

Unlike the ID PMTs, the signals from the OD PMTs are taken from the high volt-

age lines which provide them power. The high voltage to an OD PMT is distributed

by a “paddle card” through a coaxial cable, and the signal is picked off by a capacitor

located on the paddle card.

The signals are fed from the paddle cards into custom built Charge to Time

Converter (QTC) modules, which consist of LeCroy MQT200 chips and comparators

and comprise the heart of the OD DAQ’s front end electronics. There the signals are

converted into a rectangular pulses each having a width proportional to the input

signal’s charge. There are 5 QTCs distributed over 2 TKO crates within each of the

outer electronics huts shared by the ID DAQ electronics. Each QTC reads in signals

from 48 PMTs served by 4 paddle cards (12 PMTs per paddle card).

PMT

Paddle Card QTC
Module

TDC

TDC

FSCC AUX

Struck

x5

16 bit event #

4 LSBs

High Voltage

Supply

Ethernet FSCC Control

84 pin data ribbon cables

Local Hitsum

F
A

S
T

B
U

S

~470/quadrant

x10/quadx40/quad

Figure 3.11: The OD DAQ system [1].

When the QTC receives a PMT signal, it simultaneously generates a rectangular

HITSUM signal (see Section 3.5.3) that is sent to the global trigger system, which has

a threshold set to 1/4 p.e. If a global trigger signal is received by the OD electronics,

the leading edge and width of the rectangular pulse are converted to the corresponding

time and charge information by a LeCroy 1877 multi-hit TDC module. The TDC

module can record up to 8 QTC output pulses at a resolution of 0.5 ns. The dynamic

range of the TDC module is set to 16 µs before the global trigger time. The digitized
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data stored in the TDC modules are read by a slave computer through a VME

memory module called the dual port memory (DPM) and are then sent to the online

host computer where they are added to the overall event information. Figure 3.11

shows a schematic of the OD DAQ system.

3.5.3 Event Trigger System

The global event trigger system looks for a large number of hit PMTs within a

200 ns window. It does this by checking the added HITSUM pulses from all of the

detector’s ATMs (or QTCs in the case of the OD). The HITSUM pulses are 200 ns

wide signals with a height of 15 mV × the number of hit PMTs belonging to a given

ATM (QTC). Thus, the pulse height of the global HITSUM signal is proportional to

the number of hit PMTs throughout the detector within a 200 ns window.

If the global HITSUM signal for the ID (OD) exceeds 29 (19) hit PMTs, then a

global trigger signal is issued to the hardware trigger (TRG) module. The TRG mod-

ule records the trigger type and trigger generation time using a 50 MHz clock, counts

an event number with a 16-bit counter, and generates a global trigger signal that

gets sent to the detector electronics, causing the data to be read out and processed.

Figure 3.12 shows an overview of the global trigger generation scheme.

The trigger system also includes an “Intelligent Trigger” designed specifically for

low energy events, but such events are not considered in this study and thus this

trigger’s description is irrelevant for the purposes of this thesis and will be omitted

here.



29

Analog signal
from PMT

ATM threshold

Global trigger

ADC gate

TDC start 
         and stop

HITSUM

Sum of HITSUM

Master threshold

Global trigger

ATM

Central
   Hut

400 nsec width

start stop

200 nsec width

Figure 3.12: Overview of the trigger system [1].

3.6 Water Purification System

The water in Super-Kamiokande is continuously cycled through a sophisticated

purification system (see Fig. 3.13) at a rate of about 35 tons per hour, completely

recirculating all of the water in the tank over a period of about 70 days. The purpose

of the purification system is to minimize light attenuation and to keep out radioactive

impurities, such as radon, which substantiate much of the background in low energy

(<10 MeV) solar neutrino studies.

Maintaining a high level of water purity is critical to one’s ability to accurately

reconstruct physics events, as it increases the collection efficiency of the photomulti-

plier tubes, thus increasing the amount of data available in any given event. Temporal

stability in the water purity level is also a crucial requirement for accurate modelling

of the Cherenkov radiating process in the physics event reconstruction algorithms.

The purification cycle begins with a filter to remove dust larger than ∼1 µm,

followed by a heat exchanger which cools the water to 13◦ C. The water is then passed

along to a cartridge polisher to remove any heavy ions. From there, it is passed to
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Figure 3.13: The water purification system [1].

an ultraviolet sterilizer which kills bacteria, and then a reverse osmosis and vacuum

degassifier system for removing radon and other dissolved gasses. Finally the water is

passed through a second filtering stage, removing particles larger than ∼10 nm, and

then on to a membrane degassifier to reduce the radon levels even further, after which

it is returned again to the tank.

The purification system keeps the radon level in the tank to around 0.4mBq/m3.

The number density of particles in the water larger than ∼2 µm is approximately

6 /cm3. The attenuation length of light is ∼100 m at a wavelength of 420 nm. The

resistivity of the water before and after passing through the filtration system is about

11MΩ·cm and 18.20MΩ·cm, respectively.
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3.7 Calibration

3.7.1 Relative Gain Calibration

It is important that the gain of the PMTs be kept as uniform as possible in

order to minimize position and direction dependent systematic errors in reconstructed

momentum. Accordingly, the high voltage is adjusted individually on each PMT to

homogenize the gain throughout the detector.

To calibrate the relative gains of the individual PMTs, a Xe-powered scintillator

ball is lowered into the tank at several different fixed positions. The scintillator ball is

made of an acrylic containing BBOT wavelength shifter and MgO powder diffuser. A

Xe lamp followed by an ultraviolet (UV) filter and a neutral density (ND) filter provide

the light to the ball via an optical fiber. The BBOT shifts the light to the visible

range, peaking at 440 nm, and the light is diffused through the ball isotropically into

the detector. The UV light from the Xe source is simultaneously sent to a monitoring

system outside of the tank to monitor the light intensity and to generate a calibration

trigger. Figure 3.14 shows a drawing of the relative gain calibration system.

The relative gain of the ith PMT is given by:

Gi =
1

f(θi)

Qi

Q0
r2
i exp(

ri

L
), (3.5)

where Qi is the charge of the ith PMT, f(θi) is the angular acceptance of the ith

PMT, which depends on the angle θ between the axis of symmetry of the PMT and

the direction of the incident photon, ri is the distance from the Xe ball to the ith

PMT, L is the attenuation length of the water, and Q0 is a normalization factor.

In the relative gain calibration process, the high voltage of each PMT is adjusted in

order to minimize the spread of Gi over all of the ID PMTs, yielding an overall spread
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Figure 3.14: The relative gain calibration system [1].

in the relative gain of about 7%.

3.7.2 Absolute Gain Calibration

For measurement of the charge produced by a single photoelectron in a PMT, a

low energy source must be used. To serve this purpose, a Cf252 source surrounded

by Ni wire is used. The Cf source and Ni wire are encased in a polyethylene vessel

and lowered into the tank, where the Cf emits neutrons through spontaneous fission

that are captured by the Ni wire causing the emission of γ rays at various energies,

most commonly 9 MeV. Each γ ray then produces an electromagnetic shower which

in turn generates Cherenkov light that is observed by about 50–80 PMTs in total,
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with no more than one p.e. per PMT. Single p.e. distributions are created for every

PMT to set the conversion factor from raw observed charge in pC to a number of p.e.

The mean value of the peaks, 2.055 pC, is used as the conversion factor from charge

to p.e.

3.7.3 Energy Scale Calibration

The energy scale calibration is critical for many of the physics studies performed

at Super-Kamiokande. Because of its importance and because of the large range in

energies that are seen in the detector, several different methods are employed in the

energy scale calibration process.

LINAC

For very low energies, a LINAC is used to inject electrons into the detector with

energies ranging from 5 to 16.3 MeV. The LINAC setup can be seen in Fig. 3.15. The

Monte Carlo is tuned to agree with the LINAC data to within 1%.

16N Decay

16N is used as another low energy calibration source. By lowering a deuterium-

tritium generator into the detector 16N can be produced in the water. When it decays,

an electron with an energy of up to 4.3 MeV, and a photon with an energy of 6.1 MeV

are produced. The energy scale from this method agrees with the LINAC-tuned

Monte Carlo to within 0.64%.
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Figure 3.15: The LINAC calibration system [1].

Decay Electrons

All of the cosmic ray muons which stop and subsequently decay in the detector

provide a large sample of muon-decay electrons, which have a well known spectrum

in the range of tens of MeV. The data from decay electrons and the Monte Carlo

show the energy scale in the relevant range agrees to within 2.0%.

Stopping Muons

Stopping muons (muons which stop somewhere in the detector) are used for energy

calibration in two different ranges. For muons with momenta of up to approximately

400 MeV/c, the Cherenkov angle can be used to accurately measure the momentum.

This momentum is compared to the momentum determined by the number of pho-

toelectrons collected. The energy scale agreement between data and Monte Carlo for
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Figure 3.16: Decay electron spectrum from stopping muons used for calibration. The
points represent the data and the histogram represents the Monte Carlo [1].

stopping muons in the range of 200–400 MeV is within 1.5%.

At higher momenta, the Cherenkov angle is indistinguishable from the maximal

value of 42◦, thus is independent of the muon energy and cannot be used for momen-

tum determination. Instead, the distance traveled by the muon inside the detector is

used in the calibration. This distance is calculated by locating the entry point of the

muon and the vertex position of the decay electron it produced. A momentum can be

inferred from the travel distance, which is compared to the number of photoelectrons

collected. For the energy range 700 MeV to 3.5 GeV, the data and Monte Carlo agree

to within 2.6%.

Figure 3.17 shows the relevant calibration distributions for the two stopping muon

energy ranges.

π0 Reconstruction

A single π0 is often produced by neutral current neutrino interactions in Super-

Kamiokande. The π0 always decays immediately into two γ s, each of which will
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Figure 3.17: Left: Calibration using lower energy stopping muons. The double ratio
of Monte Carlo over data for the ratio Rp, of measured momentum to in-
ferred momentum from Cherenkov angle with the Monte Carlo prediction [1].
Right: Calibration using high energy stopping muons. The ratio of the mo-
mentum loss to the range. [1]

produce a Cherenkov ring in the detector. The invariant mass of these γ s is recon-

structed and compared between data and Monte Carlo, as shown in Fig. 3.18. These

distributions were made by calculating the invariant mass for all events which were

found to contain two showering (e-like) rings. A Gaussian fit over the range 100–

200 MeV/c2 was then applied to both distributions. This calibration method finds the

energy scale agreeing in the range of 150–600 MeV to within 1%.

Energy Scale Summary

All of the energy scale calibrations are summarized in Fig. 3.19. The different

methods all agree to within about 2%.

3.7.4 Relative Timing Calibration

The relative timing calibration of the PMTs is critical for vertex position recon-

struction. The length of the signal cables and the amplitude of the signal itself are

both factors that have an effect on the timing response of the PMTs. The signal am-
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Figure 3.18: π0 mass calibration [1].
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Figure 3.19: Summary of energy scale calibration [1].

plitude plays a role because of the time-walk effect, where smaller signals reach the

discriminator threshold at a later time relative to their peak than do larger signals.

The hit timing of the PMTs is calibrated using an N2 laser. The laser emits 3 ns

light pulses at 337 nm, which is shifted to 384 nm by a dye laser module. The light

is then carried to a diffuser ball inside the tank by an optical fiber. The light is

emitted into a TiO2 diffuser tip inside the diffuser ball, which is made of LUDOX
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silica gel, all of which allows the light to be very uniformly distributed throughout

the detector without significantly increasing the timing spread. Time-charge (TQ)

maps are created from the laser calibration process and are implemented in the Monte

Carlo and applied to the data. A typical TQ map can be seen in Fig. 3.20.
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Figure 3.20: TQ map for a typical Super-Kamiokande PMT. Larger time (T) values cor-
respond to earlier hits [1].

3.7.5 Water Transparency Measurement

The water transparency measurement gives the attenuation length of light across

the Cherenkov light spectrum observed at Super-Kamiokande. The two effects that go

into the attenuation length calculation are the amount of scattering and the amount

of absorption as a function of wavelength. Understanding the attenuation length is

critical to correctly model the light yield in the Monte Carlo. The water transparency

is measured using three different methods: a laser ball, cosmic ray muons, and a laser

fiber.
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Laser Ball

To measure the water transparency, a Nd:YAG laser is used to pump a Ti:Sa laser,

the light from which is carried via optical fiber to a diffuser ball in the detector. A

CCD camera placed at the top of the tank measures the intensity of the light from the

diffuser ball through the water. The light is simultaneously sent along another optical

fiber to an external PMT where the beam intensity is monitored. The intensity of the

beam can be adjusted with a variable attenuation filter, and a range of wavelengths

can be chosen. A drawing of the water transparency laser system can be seen in

Fig. 3.21.

Integrating 
SK Tank

Beam Splitter 

Diffuser
Ball

Nd:YAG Ti:Sa 

Lens

Laser Box

Sphere

2-inch PMT

CCD Camera

Optical Fiber

Figure 3.21: Water transparency laser system [1].

The ball is lowered to various depths and several measurements are taken at several

wavelengths for each depth. After taking data at each depth and each wavelength,

the attenuation length as a function of wavelength L(λ) is calculated by fitting the

function:
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log
ICCD

Ilaser
= A − ld

L(λ)
, (3.6)

where A is a constant, ICCD is the intensity of the light seen at the CCD camera,

Ilaser is the intensity of the light at the laser monitor PMT, and ld is the depth of the

diffuser ball.

The laser ball measurement is repeated over time to account for variation in the

attenuation length correlated with the water purification cycle.

Cosmic Ray Muons

Vertical, downward-going cosmic ray muons which traverse the entire length of

the detector are also used to measure water transparency. Because these muons are

all highly energetic, they produce a constant number of Cherenkov photons per unit

length traveled in the detector. Thus, the water transparency can be measured by

correlating the charge observed by each PMT and its distance from the muon track.

The muon track is reconstructed by creating a line between its entrance and exit

points in the detector.

The charge Q observed at each PMT is given by:

Q = Q0 ·
f(θ)

l
· exp

(

− l

L

)

, (3.7)

where Q0 is a constant, f(θ) is the PMT acceptance as a function of the incident angle

of the photon, l is the path length of the photon, and L is the attenuation length.

One of the advantages of the cosmic ray muon measurement of the water trans-

parency is that it can be done during normal data taking. The time variation of the

attenuation length as measured by cosmic ray muons can be seen in Fig. 3.22.
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Figure 3.22: Attenuation length as a function of time, attained from downward-going
cosmic ray muons [1].

Light Scattering

The attenuation length is given by:

L = (αabs + αscat)
−1, (3.8)

where αabs is the coefficient corresponding to absorption and αscat is the coefficient

corresponding to scattering.

To separately measure the effects of scattering in the water, a N2 laser with a

wavelength selecting dye module is used. Monochromatic light at 337 nm, 371 nm,

400 nm, and 420 nm is produced and injected into the detector via an optical fiber

pointing straight down toward the bottom of the tank. The laser is fired every 6

seconds during normal data taking. Figure 3.23 shows a drawing of the light scattering

laser system.

As can been seen in Fig. 3.23, the barrel of the detector is divided into 5 regions

for this measurement. With this setup, the PMT hits that occur at the top or at the

barrel of the detector are clearly due to scattered or reflected photons. The absorption

and scattering coefficients are tuned such that the PMT hit timing distributions are in
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Figure 3.23: Light scattering laser system [1].

agreement with the light scattering calibration data taken with the laser fiber setup.

Figure 3.24 shows the final results of the attenuation coefficient calculation. The

markers in the plot represent the data from the laser system and the solid and dashed

lines represent the model used in the Monte Carlo, which includes the effects of

Rayleigh scattering, Mie scattering, and absorption. The Monte Carlo is tuned to fit

the laser data.
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Chapter 4

Atmospheric Neutrino Monte

Carlo

The only source of background in this search arises from atmospheric neutrino

interactions taking place within the detector. Atmospheric neutrinos are one of the

final by-products of cosmic rays which strike the atmosphere. Primary cosmic rays

interact hadronically with the nuclei of air molecules in the upper atmosphere to

create a shower of mesons mostly comprised of pions and kaons. The pions and kaons

then produce neutrinos as they progress down their respective decay chains. For the

most part, these neutrinos pass through the earth without interacting at all. However,

a small fraction of them do interact inside the inner detector of Super-Kamiokande at

a rate of about 8 per day. When summed over the total livetime of the experiment,

this tallies up to a substantial amount of background events to sort out, thus it is

important to understand and model their production and interaction rates.

44
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4.1 Atmospheric Neutrino Flux

The atmospheric neutrino flux model used by Super-Kamiokande is the Honda

flux model [30]. The flux of primary cosmic rays used in the Honda flux model

is parametrized and fitted to experimental data as shown in Fig. 4.1. The effects

of Earth’s geomagnetic field and solar wind are taken into account in the primary

cosmic ray flux calculation, the latter of which can cause fluctuations as large as a

factor of two or more for 1 GeV cosmic rays and about 10% at 10 GeV.

Figure 4.1: Flux of primary cosmic rays as predicted by the Honda flux model and ob-
served experimentally. The data points are from the following experiments:
Webber [31] (crosses), LEAP [32] (upward triangles), MASS1 [33] (open cir-
cles), CAPRICE [34] (vertical diamonds), IMAX [35] (downward triangles),
BESS98 [36] (circles), AMS [37] (squares), Ryan [38] (horizontal diamonds),
JACEE [39] (downward open triangles), Ivanenko [40] (upward open trian-
gles), Kawamura [41] (open squares), and Runjob [42] (open diamonds).

The simulation model for primary cosmic ray interactions with the nuclei of air

molecules was based on the NUCRIN [43] model for cosmic ray energies below 5 GeV

and DPMJET-III [44] for energies above 5 GeV. The interactions generated in the
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simulation give a profile of the secondary particles, including pions and kaons. The

atmospheric neutrino flux is then obtained from the decays of these secondary parti-

cles.

The final atmospheric neutrino flux at Super-Kamiokande as calculated by Honda,

et al. is shown in Fig. 4.2. The Honda flux was compared to models by Barr [45]

(Fluka) and Battistoni [46] (Bartol), and all three models show agreement to within

about 10% for neutrino energies up to 10 GeV. The energy range of interest in this

study is around the mass of two nucleons, roughly 2 GeV. The overall systematic un-

certainty of the absolute atmospheric neutrino flux is about 25% due to uncertainties

in the absolute flux and interactions of the primary cosmic rays.
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Figure 4.2: Atmospheric neutrino flux at Super-Kamiokande as predicted by the Honda
flux model (solid), Fluka flux model (dashed), and Bartol flux model (dotted).

4.2 Neutrino Interactions

The NEUT [47] model was used to simulate the atmospheric neutrino interac-

tions in Super-Kamiokande. This model includes the following four basic types of

interaction:
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(quasi-)elastic scattering : ν + N → l + N ′

single meson production : ν + N → l + N ′ + meson

coherent pion production : ν + N → l + N ′ + hadrons

deep inelastic scattering : ν +16 O → l +16 O + π

where ν represents the incoming atmospheric neutrino or anti-neutrino of either flavor

(µ or e), N and N ′ represent the original and outgoing nucleon (p or n), respectively,

and l represents the outgoing lepton. Note that l can be either a charged lepton in

the case of a charged current (CC) interaction, or a neutrino in the case of a neutral

current (NC) interaction. All of the four interaction types above can be of CC or NC

type.

Fermi momentum and Pauli blocking are taken into account for all of the neutrino-

nucleon interactions. Fermi momentum of nucleons in 16O is calculated using the same

technique described in Section 5.1. Pauli blocking is simulated by requiring that the

momentum of the recoil nucleon exceed the Fermi surface momentum of the 16O

nucleus, taken to be 225 MeV/c in NEUT.

4.2.1 Elastic and Quasi-Elastic Scattering

The V − A theory calculated by Llewellyn-Smith [48] is used to simulate the

elastic and quasi-elastic interactions. These events typically produce only one ring

from the outgoing lepton, or in some cases, a recoil proton with a momentum above

Cherenkov threshold. For this reason, they are a rare background in this search,

though occasionally more rings can be produced by such means as multiple scattering

or subsequent hadronic interactions of the recoil nucleon.

The charged and neutral current quasi-elastic scattering cross sections from the

Llewellyn-Smith model are shown in Fig. 4.3. cross sections for both neutrinos and
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anti-neutrinos are shown in the figure.
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Figure 4.3: Cross sections for quasi-elastic scattering of νµ (left) and ν̄µ (right) used by
NEUT (lines) overlaid on data (markers) from ANL [49], Gargamelle [50–52],
BNL [53], Serpukhov [54] and SKAT [55].

4.2.2 Single Meson Production

Cross sections for single meson production are taken from Rein and Sehgal’s

model [56]. This type of interaction becomes significant for neutrino energies above

∼1 GeV, where it is possible to form baryonic resonances which decay pionically:

ν + N → l + N∗

N∗ → N ′ + meson ,

where N and N ′ are the initial and final state nucleons, respectively, N∗ is an in-

termediate state baryonic resonance, and l is the outgoing lepton (charged lepton or

neutrino).

The ∆(1232) resonance is the dominant resonance below 1.4 GeV. For this res-

onance only, the angular distribution of pions is treated specially by the Rein and

Sehgal model. An isotropic angular distribution is assumed for all other resonances.

Though rare, the production of η and K mesons is also included in the model. η

and K single meson production account for only 4% and 0.6% of all the atmospheric
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neutrino Monte Carlo events, respectively. Nonetheless, these are important inter-

actions to consider in this analysis, which explicitly searches for rings from charged

kaons and their decay products.

The cross sections for charged current single meson production interactions used

in the Monte Carlo are shown in Fig. 4.4, overlaid on the relevant experimental data.

Single meson ∆ resonance interactions can create events with multiple rings, in-

cluding rings from charged pions and recoil protons, both of which may be classified

as muon candidates in the analysis (see Section 9.4.5). For these reasons, this type

of atmospheric neutrino interaction was found to be the second largest source of

background in the dinucleon decay search.

(GeV)νE
1 10

)2
 c

m
−3

8
)(

10
µν(σ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
+π n −µ → n µν

(GeV)νE
1 10

)2
 c

m
−3

8
)(

10
µν(σ

0

0.2

0.4

0.6

0.8

1

1.2
+π p −µ → p µν

(GeV)νE
1 10

)2
 c

m
−3

8
)(

10
µν(σ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0π p −µ → n µν ANL Radecky, Phys.Rev.D 25, 1161 (1982)

ANL Campbell, Phys.Rev.Lett. 30, 225 (1973)

ANL Barish, Phys.Rev.D 19, 2521 (1979)

BEBC Allen Nucl.Phys.B 264, 221 (1986)

BEBC Allen Nucl.Phys.B 176, 269 (1980)

BEBC Allasia Nucl.Phys.B 343, 285 (1990)

BNL Kitagaki Phys.Rev.D 34, 2554 (1986)

FNAL Bell Phys.Rev.Lett. 41, 1008 (1978)

Figure 4.4: Single pion production cross sections from the Monte Carlo model (lines)
and experimental data (markers). Top left: charged pion production off of
a proton. Top right: charged pion production off of a neutron. Lower left:
neutral pion production. Lower right: Key for the experimental data points.
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4.2.3 Coherent Pion Production

When a neutrino scatters off of the entire 16O nucleus as a whole, rather than

off of a single one of its constituent nucleons, a pion can be produced in a process

called coherent pion production. The pion will carry away the same charge as the

incoming weak current. The nucleus absorbs very little of the momentum exchanged

in the interaction, thus the angular distribution of the outgoing pion is peaked in the

direction of the incoming neutrino.

Because the pion never experiences the nuclear environment, only a single pion

is produced in the interaction. More than 1 or 2 rings can be produced by coherent

pion production if the outgoing pion interacts hadronically in the water, though such

events are rare. Because this analysis is concerned only with events that have 3 rings

or more, coherent pion production constitutes a small portion of the total background,

and will not be discussed in detail in this dissertation. For more information on the

treatment of coherent pion production in the atmospheric neutrino Monte Carlo,

see [57].

4.2.4 Deep Inelastic Scattering

Two different models are used to calculate cross sections for deep inelastic scat-

tering. A custom model [58] is used for interactions with an invariant mass W of the

resulting hadrons from 1.3 to 2.0 GeV/c2, where only pions are considered as outgoing

mesons. Due to their ability to produce several non-showering Cherenkov rings in a

single event, multi-pion production from deep inelastic scattering of atmospheric neu-

trinos in this energy range was found to be the most prevalent source of background

in this search.

For energies in excess of 2.0 GeV/c2, PYTHIA/JETSET [59] is used, which consid-
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ers a wider variety of outgoing mesons. In all deep inelastic scattering calculations,

the GRV98 [60] parton distribution function is used, including corrections from Bodek

and Yang [61].

Studies have been conducted at Fermilab [62] using a 15-foot hydrogen bubble

chamber to find the mean number of pions, n̄π, produced by deep inelastic interac-

tions, found to be:

n̄π = 0.09 + 1.83 lnW 2. (4.1)

The KNO (Koba-Nielsen-Olsen) scaling is used to determine the number of pions in

each deep inelastic scattering neutrino event. To avoid conflicts with the single pion

production model in the overlapping range of W , at least two pions must be produced

to invoke the deep inelastic scattering calculation.

The forward-backward asymmetry of the pion production was studied at the

BEBC [63] experiment, and is given by:

n̄f
π

n̄b
π

=
0.35 + 0.4 lnW 2

0.50 + 0.09 lnW 2
. (4.2)

The charged current cross sections used in the Monte Carlo are shown in Fig. 4.5

along with the relevant experimental data.

Based on experimental results that are reviewed in [64] and [65], neutral current

cross sections were assumed to have the following relationship to the charged current

cross sections:
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σ(νN → νX)

σ(νN → µ−X)
=























0.26 ( Eν < 3 GeV )

0.26 + 0.04 (Eν/3 − 1) ( 3 GeV ≤ Eν < 6 GeV )

0.30 ( Eν ≥ 6 GeV )

, (4.3)

σ(ν̄N → ν̄X)

σ(ν̄N → µ+X)
=























0.39 ( Eν < 3 GeV )

0.39 − 0.02 (Eν/3 − 1) ( 3 GeV ≤ Eν < 6 GeV )

0.37 ( Eν ≥ 6 GeV )

. (4.4)
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Figure 4.5: cross sections for deep inelastic charged current interactions. Calculations

are shown for models with and without Bodek-Yang corrections for neutrinos
(top curves) and anti-neutrinos (bottom curves). Experimental data points
(markers) are overlaid.

4.3 Nuclear Effects

Mesons and nucleons created or scattered inside the 16O nucleus may interact

hadronically by inelastic scattering, charge exchange, and/or absorption as they prop-



53

agate through the nuclear environment. To simulate these effects, a mean free path

is first calculated using a point of origin determined by the Woods-Saxon distribution

(Equation 5.1). A cascade model is then used to simulate inelastic scattering, charge

exchange, and absorption. The results from π − N scattering experiments [66] are

used in the determination of the final momentum from inelastic scattering or charge

exchange. Pauli blocking is taken into account for all interactions.

4.4 Detector Simulation

Once the particles have left the parent nucleus, their propagation through the

detector, the emission of Cherenkov light, and the response of the PMTs is handled

by a GEANT3 [67] based Monte Carlo simulation of the Super-Kamiokande detector.

Data acquisition electronics and trigger systems are also simulated in the Monte Carlo.

A list of the simulated physics processes for each particle type is shown in Table 4.1.

Hadronic interactions above 500 MeV are simulated using the CALOR [68, 69] pro-

gram, and a custom program developed originally for the Kamiokande experiment [58]

based on experimental data from π-16O and π-p scattering [70] is used for hadronic

interactions below 500 MeV. Simulation results are compared to the CALOR package

and the Fluka model to estimate systematic uncertainties for hadronic interactions.

A Poisson distribution with a mean given by Equation 3.4 is used to determine the

number of Cherenkov photons generated at each wavelength, which are emitted at an

angle given by Equation 3.3. Rayleigh scattering, Mie scattering, and absorption as

described in Section 3.7.5 are all simulated for the Cherenkov photons.

PMT response is based on the quantum efficiency curve shown in Fig. 3.8 and the

single photoelectron distribution.
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particle type simulated processes

γ
e+ e− pair production
Compton scattering
Photoelectric effect

e±

Multiple scattering
Ionization and δ-ray production
Positron annihilation
Cherenkov radiation

µ±

Decay in flight and at rest
Multiple scattering
Ionization and δ-ray production
Direct e+ e− pair production
Nuclear interactions
Cherenkov radiation

hadrons

Decay in flight and at rest
Multiple scattering
Ionization and δ-ray production
Hadronic interactions
Cherenkov radiation

Table 4.1: Physics processes simulated in the GEANT3 Super-Kamiokande Monte Carlo.



Chapter 5

Dinucleon Decay Monte Carlo

The dinucleon decay mode 16O(pp) → 14C K+ K+ was studied in this analysis.

The reasons for choosing this mode in lieu of other dinucleon decay modes with final

state kaons (i.e., 16O(pn) → 14N K+ K0 and 16O(nn) → 14O K0 K0) are described in

Chapter 9. A total of 75,000 events of 16O(pp) → 14C K+ K+ were simulated.

The 16O(pp) → 14C K+ K+ Monte Carlo (also referred to as simply the “p p →

K+ K+ Monte Carlo”) was generated in two stages. In the first stage, the kinematics

of the kaons are determined, and any intra-nuclear interactions that take place before

the kaons leave the parent nucleus are simulated. In the second stage, the kaons

are propagated through the water using the official Geant3 [67] Super-Kamiokande

detector simulation software described in Section 4.4.

5.1 Intra-Nuclear Simulation

In the dinucleon decay Monte Carlo, the Fermi gas model is used to determine the

magnitude of each parent nucleon’s momentum. Figure 5.1 shows the distribution

of momenta for the s and p wave states that were used. Because the vector sum

of the decaying nucleons will always be non-zero, the outgoing kaons will never be

55
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ejected with exactly back-to-back trajectories. The kinetic energy gained from the

Fermi momentum is relatively small compared to that gained from the rest mass of

the parent nucleons, however, so the kaons will still have a very large opening angle

between them the great majority of the time.

Figure 5.1: Calculated Fermi momentum distribution used in the Monte Carlo (lines)
overlaid on experimental data points from electron scattering off 12C [71]
(markers). Left: p-state. Right: s-state.

The momentum of the kaons can also be modified by an effect called “correlated

decay”. The Monte Carlo assumes that there is a 10% chance of a correlated de-

cay [72] occurring in a given dinucleon decay event. Correlated decay is the name

given to the decay process in which a third, spectator nucleon becomes involved in

the decay interaction, absorbing a portion of the available energy. The resulting mo-

mentum distribution of the kaons and the spectator nucleon is akin to a three-body

decay. Correlated decay is speculated to happen on theoretical grounds, based on

the overlapping of wave functions. As this process is not well understood, a 100%

uncertainty was taken with this effect when calculating the systematic errors in the

analysis.
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Figure 5.2 shows the simulated kinematics of the original protons before they

decay, and Fig. 5.3 shows the kinematics of the outgoing kaons from the decay. The

effect of correlated decay can be seen in the tails of the plots in the latter figure.
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Figure 5.2: Kinematics of decay protons in simulated 16O(pp) → 14C K+ K+ events. The
momentum (left) and total energy (right) of the first (solid lines) and second
(dashed lines) protons.
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Figure 5.3: Kinematics of outgoing kaons in simulated 16O(pp) → 14C K+ K+ events.
The invariant mass (left), and total momentum (right) are shown.

The final task of the intra-nuclear simulation is to propagate the kaons through

the nuclear environment. It is possible, for example, that a kaon may undergo charge

exchange (K+n → K0p) before exiting the parent nucleus in which the dinucleon de-

cay took place. The kaon is stepped through the nucleus by increments of 0.07 fm, and

at each step the cross-sections for charge exchange, elastic, and inelastic interactions

are calculated using the model of Oset, et al. [73].
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The distance that the kaon travels through the nuclear environment is determined

by the location of the dinucleon decay point within the nucleus. A Woods-Saxon

distribution is used to determine the dinucleon decay point:

ρ(r) =
ρ(0)

1 + exp
(

r−a
b

) , (5.1)

where ρ(r) is the nuclear density as a function of r, the radial distance from the

center of the nucleus, a = 1.07A1/3 = 2.69 fm is the maximum radius for 16O, and

2b = 0.82 fm is the thickness of the nuclear surface

Charge exchange of the K+ is considered an intrinsic source of inefficiency in

this search. In the simulation, charge exchange occurred inside the parent nuclear

environment with a frequency of 0.05% per kaon.

5.2 Extra-Nuclear Simulation

In the next stage of the Monte Carlo simulation, the kinematic vectors of the

kaons calculated from the intra-nuclear simulation are used as the inputs to the official

Geant3-based Super-Kamiokande Monte Carlo software. The kaons are propagated

through the detector, and hadronic interactions, ionization energy loss, Cherenkov

light production, subsequent particle decays, and detector response are all simulated.

See Section 4.4 for more details on the Super-Kamiokande detector simulation.

The hadronic interaction cross-section for K+ calculated from the simulation is

shown in Fig. 5.4. The types of interactions that were simulated are listed in Table 4.1.

The most important types of hadronic interactions that were simulated were elastic

and inelastic interactions, charge exchange, Σ creation, and Λ creation. The latter

three were sources of intrinsic inefficiency in this search, as they destroy the K+ state
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before it has a chance to decay. The simulated dinucleon decay kaons underwent

charge exchange in water at a rate of about 10% per kaon. Σ creation and Λ creation

occurred at a rate of about 1% and .5% per kaon, respectively.
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Figure 5.4: Kaon-nucleon interaction cross-section calculated from the 16O(pp) →
14C K+ K+ Monte Carlo overlaid on K+ − p and K+ −n cross sections taken
from the PDG [12].



Chapter 6

Data Reduction Process

The data reduction process separates events caused by interesting physical phe-

nomena from events induced by uninteresting incidental sources, such as radioactivity

in and around the walls or cosmic ray muons. Before reduction, there are on the order

of 106 events (≈ 10 gigabytes of data) recorded per day. Low energy triggers comprise

the majority of these events, occurring at a rate of about 11 Hz. Cosmic ray muons

dominate the high energy triggers, occurring at a rate of about 3 Hz.

The physically interesting events are categorized as either fully contained (FC),

partially contained (PC) or upward going muons (UPMU). This search is concerned

only with the FC events, thus only the FC reduction process is described here. FC

reduction is performed by a five step automated process. The description of the PC

and UPMU reduction processes is beyond the scope of this thesis, but may be read

about in further detail in [57].

6.1 First Reduction

The first reduction step aims to remove events from cosmic ray muons and ra-

dioactive decays. The cuts in the step must be robust and relatively loose, as it is
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applied during the online data taking process.

The requirements for the first reduction are as follows:

• PE300 ≥ 200: The number of photoelectrons in the ID that fall within a 300 ns

sliding window in time must be greater than 200.

• NHITA800 ≤ 50: The number of hits in the OD that fall within a fixed window

in time running from 400 ns before the ID trigger to 400 ns after must be less

than 50, or else the OD trigger must have been disabled at the time.

• TDIFF ≥ 100 µs: The time interval between the previous event an the current

event must be greater than 100 µs. This is to reject Michel electrons from the

decay of stopping muons.

The event rate is reduced to about 3000 events per day after the first reduction

stage.

6.2 Second Reduction

The aim of the second reduction stage is the same as that of the first with the

additional goal of removing flasher events, which are events caused by flashing PMTs.

Essentially the same cuts are applied, but in this stage they are slightly tighter. The

second reduction process and all later reduction processes are applied offline.

• PEmax/PE300 < 0.5: here PEmax is the maximum number of photoelectrons

collected by a single PMT in a given event, and PE300 is the same quantity as

defined in the first reduction process. This cut removes flasher events.
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• NHITA800 ≤ 25 if PEtotal < 100000 p.e.: Where PEtotal is the total number

of photoelectrons collected in the ID. As in the first reduction stage, this cut

may be circumvented if the OD trigger was disabled at the time.

6.3 Third Reduction

The goal of the third reduction stage is similar to that of the first two, however the

cuts and tools used in this stage are more elaborate than before. The third reduction

stage is broken up into six sub-stages:

• through-going muon cut

• stopping muon cut

• cable hole muon cut

• flasher cut

• accidental muon cut

• low energy muon cut

6.3.1 Through-Going Muon Cut

Through-going cosmic ray muons enter and exit the detector, leaving behind a

substantial amount of charge in the ID along with a cluster of charge at both the

entrance and exit points in the OD. A special muon fitter is used to make the following

through-going muon cuts.

Events which satisfy the following criteria are categorized as through-going muon

events and are rejected:
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• PEmax > 250 p.e.: If a PMT in the ID collected more than 250 p.e., then the

following cuts are applied.

• mugood > 0.75: The goodness value from the special muon fitter must be

greater than 0.75.

• NHITAin ≥ 10 or NHITAout ≥ 10: The number of hit OD PMTs inside an

800 ns time window and located within 8 m of the entrance (in) or exit (out)

point must be greater than 10.

6.3.2 Stopping Muon Cut

The special muon fitter is again used in the stopping muon cut.

Events which satisfy the following criteria are categorized as stopping muon events

and are rejected:

• {mugood > 0.5 and NHITAin ≥ 5} or NHITAin ≥ 10: Where the same

definitions from the through-going muon cut are used.

6.3.3 Cable Hole Muon Cut

This cut removes cosmic ray muons which penetrate the detector through the

cable holes used to run cable bundles down to the PMTS. When this happens, little

to no signal is left in the OD, thus making the standard through-going or stopping

muon cuts ineffective. The cable hole muon cuts are as follows:

Events which satisfy the following criteria are categorized as cable hole muon

events and are rejected:

• NHITA > 1: There must be at least one hit in the OD.
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• lveto < 4 m: The distance between the vertex and the cable hole (lveto) must be

less than 4 m.

6.3.4 Flasher Cut

Flasher events occur when there is a discharge from the dynode of a PMT. They

are characterized by their unusually wide timing distribution.

Events which satisfy the following criteria are categorized as flasher events and

are rejected:

• NMIN100 ≥ 14 or NMIN100 ≥ 10 if NHITID < 800: Where NMIN100 is

the minimum number of hit ID PMTs in a 100 ns time window, and NHITID

is the total number of hit PMTs in the ID.

6.3.5 Accidental Muon Cut

Cosmic ray muons will occasionally enter the detector shortly after a low energy

event, but within the same trigger gate. Because the light deposited in the OD from

the muon is relatively late compared to the initial trigger timing, these accidental

muon events require a special cut.

Events which satisfy the following criteria are categorized as accidental muon

events and are rejected:

• NHITAoff > 20: The number of hit OD PMTs in the 500 ns time window

from 400 ns to 900 ns after the trigger must be greater than 20.

• PEoff > 5000 p.e.: The total number of photoelectrons collected in the ID in

the same 500 ns time window as above must be greater than 5000.
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6.3.6 Low Energy Muon Cut

Low energy events caused by radioactive decays and noise in the electronics are

removed in this step.

Events which satisfy the following criteria are categorized as accidental muon

events and are rejected:

• NHIT50 < 50: The number of hit ID PMTs within a 50 ns sliding window in

time must be less than 50. The residual hit time of each PMT is used, which

takes into account the time of flight of the photons from a single vertex point.

The vertex is defined here as the point which most strongly peaks the residual

time distribution. 50 PMT hits roughly correspond to a 9 MeV event.

At the end of the third reduction stage, the event rate has been reduced to 45

events per day.

6.4 Fourth Reduction

The fourth reduction stage is dedicated to removing the remaining flasher events.

An important characteristic of flasher events is that the light pattern created in these

events tends to be repeated over long periods of time. This repetition is exploited in

the fourth reduction process, which is explained in further detail in [57].

The event rate has been reduced to about 18 events per day after applying the

fourth reduction stage.
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6.5 Fifth Reduction

The fifth and final stage in the FC reduction process is designed to remove various

remaining cosmic ray muon and flasher events. It consists of four steps:

• final stopping muon cut

• invisible muon cut

• final accidental muon cut

• long tail flasher cut

6.5.1 Final Stopping Muon Cut

This cut is similar to the stopping muon cut applied earlier during the third

reduction stage, but in this step the entrance point is now computed by extrapolating

backward along the fitted track of the muon, rather than using the earliest hit PMT.

Events which satisfy the following criteria are categorized as stopping muon events

and are rejected:

• NHITAin ≥ 5: Where NHITAin is defined as before.

6.5.2 Invisible Muon Cut

This cut targets muons which are below Cherenkov threshold (hence “invisible”),

but emit a decay electron in the detector which can be seen.

Events which satisfy the following criteria are categorized as invisible muon events

and are rejected:

• PDtotal < 1000: The total number of photoelectrons in the ID is less than 1000.
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• NHITAmax
early > 4: The maximum number of hit OD PMTs in a 200 ns time

window allowed to move from 100 ns before the trigger to 8900 ns after the

trigger is greater than 4.

• NHIAmax
early + NHITA500 > 9 if lcluster < 500 cm or else NHITAearly > 9:

Where NHITA500 is the number of hit OD PMTs in a 500 ns time window

from −100 ns to 400 ns, and lcluster is the distance between the two OD clusters

used during the calculation of NHITAearly and NHITA500.

6.5.3 Final Accidental Muon Cut

The final accidental muon cut further eliminates muons which accidentally sneak

in after a low energy event.

Events which satisfy the following criteria are categorized as accidental muon

events and are rejected:

• PE500 < 300 p.e.: The total number of photoelectrons in the ID within a 500 ns

time window from −100 ns to 400 ns must be less than 300.

• NHITAmax
late > 20: The number of hit OD PMTs in a 200 ns sliding time window

allowed to move from 400 ns to 1600 ns after the trigger must be greater than

20.

6.5.4 Long Tail Flasher Cut

The long tail flasher cut is similar to the flasher cut applied during the third

reduction phase, but with tighter cut values.

Events which satisfy the following criteria are categorized as long tail flasher events

and are rejected:
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• NMIN100 > 5 if GOODpoint < 0.4: The minimum number of hit ID PMTs in

a 100 ns sliding time window allowed to move from 300 ns to 800 ns after the

trigger gate must be greater than 5 if the goodness of the point fit, GOODpoint,

is greater than 0.4.

After applying the fifth reduction process, the event rate has been reduced to

about 16 events per day.

6.6 Final Reduced Data Sample

Approximately 16 events per day remain in the data after applying all five of the

FC reduction processes. Three final cuts are applied to reduce the data even further

to create the final sample:

• NHITAC < 10: The number of OD PMT hits in the cluster with the highest

charge must be less than 10.

• EV IS > 30 MeV: The total amount of visible energy must be greater than

30 MeV, where the visible energy is defined as the sum of the energy of each

ring when assuming all rings to have been produced by electrons.

• WALL > 200 cm: The distance from the vertex point to the nearest wall must

be greater than 200 cm. This is the fiducial volume (FV) cut.

The above cuts reduce the final event rate in the data to about 8.2 events per day.

The contamination from undesired backgrounds in the data at this stage, such as

cosmic ray muons and flashers, is estimated to be negligible (< 1%). The estimated

efficiency of the reduction process for both atmospheric neutrino events and dinucleon
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Reduction Stage Events per Day
Pre-Reduction 1,200,000
First Reduction 3,000
Second Reduction 200
Third Reduction 45
Fourth Reduction 16
Final Reduction (FV) 8.2

Table 6.1: Event rates in the data after each stage of the fully contained reduction process.

decay events is about 99.9%. Table 6.1 summarizes the event rates at each stage of

the reduction process.



Chapter 7

Physics Reconstruction

Reconstruction on a ring-by-ring basis was done in a two-step, bootstrapping

process. First, the standard Super-Kamiokande event reconstruction algorithm was

applied. From this, the reconstructed event vertex, ring directions, and Cherenkov

angles were used as inputs for the second step of ring reconstruction, which utilized

a custom built algorithm suitable for identifying multiple particle vertices in a single

event. The name of the second reconstruction algorithm is MVFIT, for multiple

vertex fitter.

7.1 Standard Reconstruction Algorithm

The standard Super-Kamiokande event reconstruction software is made of several

specialized algorithms that combined make up the full reconstruction process. The

algorithms are listed below in sequential order:

(1) Vertex Position and Ring Direction

Calculates a single event vertex based on the point where the residual timing

distribution of hit PMTs has the sharpest peak. Also calculates the direction
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and Cherenkov angle of the dominant ring.

(2) Ring Counting

Additional rings are searched for using a likelihood method. The event vertex

position and direction of the dominant ring calculated in the previous step are

used in the calculation. The total number of rings is determined in this step.

(3) Showering Likelihood

A showering likelihood variable is calculated for all rings in the event based on

the ring’s opening angle and a comparison between the observed light pattern

and the expected light patterns for showering and non-showering particle types.

(4) Ring Momentum

The momentum of each ring is calculated by comparing the amount of charge

accumulated inside a 70◦ cone with respect to the ring’s direction. A look-up

table based on MC simulations and detector calibration is used for the conversion

from charge to momentum. The observed charge in each PMT is also divvied up

into separate rings in this step.

(5) Ring Number Correction

Possible fitting mistakes are corrected by eliminating rings of very low momentum

that overlap with other more energetic rings.

(6) Decay Electron Finding

Rings from decay electrons following the primary event are identified.
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7.1.1 Vertex Position and Ring Direction

There are three parts in the initial event vertex position and dominant ring fitting

procedure: (1) point fit, (2) direction fit, and (3) TDC fit.

Point Fit

The event vertex position estimation is performed with the assumption that all

of the light observed in the detector was emitted simultaneously from a single point

source. To find the point that best matches this hypothesis, a three-dimensional grid

of test points throughout the volume of the ID is considered, and the single best of

these points is kept. Then the process is repeated with a finer granularity in a small

region around the best point of the previous granularity level.

The best test point in the grid is determined by maximizing a goodness calculation,

which is based on the hit times of the PMTs. The point fit goodness is defined as

follows:

Gpoint =
1

Nhit

∑

i

exp

(

− (ti − t̄)2

2 (a × σt)
2

)

, (7.1)

where Nhit is the total number of hit PMTs, σt is the timing resolution of the PMTs

(2.5 ns), a = 1.5 is a factor to crudely account for light scattering, and t̄ represents

the average value of the residual times of the PMTs, ti, which are defined:

ti = t0i −
di

v (di, qi)
, (7.2)

where t0i is the recorded absolute time of the PMT hit, di is the distance from the test

vertex point to the PMT, and v is the effective velocity of light in water as a function

of di and the recorded charge, qi, accounting for wavelength and acceptance effects.
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This vertex fitting algorithm is guided by the assumption that all light in the

event was originated simultaneously from the same point. In cases where this is

not true, however, the reconstructed event vertex found by the point fit algorithm

will tend to approximate an “average” event vertex (e.g., a point along the track

over which a single muon radiates Cherenkov light, or a point between two spatially

separated muons). The point fit vertex can still be safely used as a springboard for

more accurate vertex fitting algorithms applied later in the reconstruction process,

however.

Direction Fit

In the next step, the direction and Cherenkov angle of the dominant ring is esti-

mated. The initial direction guess is found by calculating a charge-weighted vector

sum of all light in the detector using the event vertex found by the point fit in the

previous step. From there, a directional test grid in (θ, φ) space is generated, analo-

gous to the test grid in the vertex point fit. A goodness calculation is again used, this

time to find the best direction in the grid, along with the best Cherenkov opening

angle.

The goodness used in the directional fit is defined as follows:

Gdir =

∫ θC

0
Q(θ)dθ

sin θC
exp

(

−(θC − θmax)
2

σ2
a

)

, (7.3)

where θC is the test opening angle (allowed to vary), Q(θ) is the charge distribution

as a function of angle relative to the test direction, θmax = 42◦ is the maximum

Cherenkov angle assuming the particle’s velocity β = 1, and σa is the estimated rms

spread of PMT hits around θC . The test direction and opening angle which yield the

maximum goodness are taken as the best fit.
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TDC Fit

The purpose of the TDC fitting step is to more precisely fit the vertex position by

taking into account the finite track length of a massive charged particle and the effect

of indirect light caused by scattered Cherenkov photons. The vertex, ring direction,

and Cherenkov angle of the dominant ring found in the point fit and direction fit

steps are used as inputs to this step.

In this step, a modified residual time calculation for the PMT hits inside the

Cherenkov cone is used:

ti = t0i −
1

c
| ~Xi − ~O| − n

c
|~Pi − ~Xi|, (7.4)

where ~O is the test vertex position, ~Xi is the position along the track where photons

would be emitted toward the i-th PMT, n is the index of refraction for water, ~Pi is

the position of the i-th PMT, and t0i is the recorded absolute time of the hit of the

i-th PMT.

The goodness for PMTs inside (GI) and outside (GO) the Cherenkov cone are

calculated slightly differently, as shown below:

GI =
∑

i

1

σ2
i

exp

(

− (ti − t̄)2

2 (a × σ̄)2

)

, (7.5)

GO =
∑

i

1

σ2
i

max

[

exp

(

− (ti − t̄)2

2 (a × σ̄)2

)

, 0.8 exp

(

−ti − t̄

20 ns

)

]

, (7.6)

where σi is the timing resolution of the i-th PMT, σ̄ is the average PMT timing

resolution, a = 1.5 is a factor to account for indirect scattered light, ti is the residual

time of the i-th PMT, t̄ is the average residual time of the PMTs, and 20 ns is the

average time difference between direct and scattered light. The GI goodness value



75

and the GO goodness value are calculated separately for PMT hits inside (θi < θC or

ti < t̄) and outside (θi > θC or ti > t̄) of the Cherenkov opening angle, corresponding

to the direct and scattered light, respectively.

The final overall goodness for the test vertex position is then calculated using both

GI and GO, as shown below:

Gtotal =
GI + GO
∑

i σi
. (7.7)

The track length used in the calculation is estimated by summing the charge

within 70◦ of the direction of the ring and then calculating the corresponding muon

momentum required to produce that amount of light. Using this track length, the

total goodness, Gtotal, is maximized as a function of vertex position and ring direc-

tion. Then the procedure is repeated, calculating a new track length and varying the

vertex position and ring direction to maximize the total goodness once again. This

is repeated in an iterative process until a final, stable fit is reached.

The resolution of the TDC fit vertex, determined by the distance between the

reconstructed vertex position and the true vertex position of Monte Carlo events, is

shown in Fig. 7.1 for various subsamples of single-ring atmospheric neutrino events.

The resolution falls between 50 cm and 90 cm, depending on the sample.

7.1.2 Ring Counting

After fitting an event vertex and identifying the dominant ring, the ring counting

algorithm is applied to search for other possible rings in the event. There are two

basic steps to the ring counting procedure: (1) search for ring candidates and (2) test

the best candidate found in step (1). If the ring candidate passes the test in step (2),

it is removed from the search map and the process is repeated from step (1) again.



76

0

200

400

600

800

1000

1200

1400

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200

0

50

100

150

200

250

300

0 50 100 150 200

Vertex displacement (cm)

N
um

be
r 

of
 e

ve
nt

s

Vertex displacement (cm)

N
um

be
r 

of
 e

ve
nt

s

Vertex displacement (cm)

N
um

be
r 

of
 e

ve
nt

s

Vertex displacement (cm)

N
um

be
r 

of
 e

ve
nt

s

0

50

100

150

200

250

300

350

400

0 50 100 150 200

Figure 7.1: Distance between the TDC fit reconstructed vertex and the event true vertex
for sub-GeV (<1.33GeV) and multi-GeV (>1.33GeV) single-ring atmospheric
neutrino Monte Carlo events.

This continues until all ring candidates fail the test in step (2).

Ring Candidate Search

To search for ring candidates, a Hough transform is applied to the PMT hits. This

involves first mapping the PMT hits in (θ, φ) space relative to the event vertex and

dominant ring direction. Then, the charge in each hit is distributed uniformly along

a virtual circle corresponding to a projection of a cone with a 42◦ half-opening angle

centered on the position of the hit PMT itself. This results in the accumulation of

charge at the center of a true Cherenkov ring, where the Hough-transformed charge
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distributions overlap the most. See Fig. 7.2 for an illustration of this concept.

(possible center)
42 deg. ring

(most probable)

hit PMT

Cherenkov ringcenter

Figure 7.2: The basic concept of the Hough Transform. The charge in a PMT is dis-
tributed along a circle corresponding to a 42◦ Cherenkov opening angle as seen
from the event vertex. The circles of the hit PMTs from the same Cherenkov
ring will then overlap in the center of the actual ring.

In practice, virtual circles are not actually drawn out, but instead an expected

charge distribution function f(θ) is mapped out for each hit PMT, weighted by the

observed charge distribution. When plotted in a 2-D histogram, the ring directions

become visible as peaks of charge as shown in Fig. 7.3.

Ring Candidate Test

After identifying the candidate rings, they are tested through the use of a log-

likelihood method. If there are N rings already confirmed to be good candidates in

the event, then the (N + 1)-th candidate ring is tested for its validity.

The ring candidate test likelihood is defined as follows:

F =

5
∑

i

{log [(Pi)N+1] − log [(Pi)N ]} , (7.8)

where Pi is the probability density function for the i-th evaluation function. So,
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Figure 7.3: A two dimensional histogram of a Hough transformed charge distribution.
Two distinct charge peaks can be seen, corresponding to the directions of two
candidate Cherenkov rings in the event.

PN+1 and PN are the probability functions for the event to have (N +1) and N rings,

respectively. Note that the algorithm is limited to a maximum of five rings in an

event.

The following quantities are used in determining the evaluation functions:

• The difference of L(N + 1) − L(N)

• The average value of the expected charge from the (N + 1)-th ring near the

edges of the N confirmed Cherenkov rings

• The average value of the expected charge outside the (N + 1)-th ring
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• The residual charge left after subtracting the expected charge from the N con-

firmed rings

• The difference between the charge in peak of the candidate ring and the average

charge inside and outside the candidate ring

Here, the function L(N) is defined:

L(N) =
∑

i

log

(

prob

(

qobs
i ,

N
∑

n=1

αn · qexp
i,n

))

, (7.9)

where prob(qobs
i , qexp

i ) is the probability of detecting qobs
i given the expected value of

qexp
i . The probability density functions were determined using Monte Carlo studies.

7.1.3 Showering Likelihood

The showering likelihood algorithm is intended to separate rings into two differ-

ent types: a showering type and a non-showering type. The former type describes

the diffused ring patterns created by electrons, positrons and gamma-rays due to the

effects of electromagnetic showering and multiple scattering. See Fig. 7.4 for an ex-

ample of how a showering ring appears in the event display. The latter type describes

the sharper-edged ring patterns generated by more massive charged particles, such

as muons and charged mesons, including kaons. See Fig. 7.5 for an example of how a

non-showering ring appears in the event display.

The Cherenkov opening angle provides another feature of distinction between

showering and non-showering rings. The Cherenkov angle is expected to always be

maximal (42◦) for the lighter, showering type particles, but it may be smaller for more

massive particles if they are not traveling at highly relativistic speeds or after they

have lost energy through ionization. The fuzziness or crispness of the light pattern
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Figure 7.4: Example of a showering ring.

Figure 7.5: Example of a non-showering ring.
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and the Cherenkov opening angle are both exploited simultaneously by the showering

likelihood algorithm.

The showering likelihood calculation depends on the ability to formulate expected

charge distributions for the two ring type hypotheses. The details of those expected

charge distributions will be explained first, followed by the description of the likeli-

hood itself.

Expected Charge Distributions

The expected charge distributions describe the amount of charge expected to be

seen in in each PMT given that the ring was produced by an electron (qexp(e)) to

represent the showering type, or a muon (qexp(µ)) to represent the non-showering

type. They are defined as:

qexp
i (e) = αeQ

exp(pe, θi)

(

R

ri

)1.5
1

exp( ri

L
)
f(Θi) + qscat

i , (7.10)

qexp
i (µ) =

(

αµ
sin2 θxi

ri

(

sin θxi
+ ri · dθ

dx
|x=xi

) + qknock
i

)

1

exp( ri

L
)
f(Θi) + qscat

i , (7.11)

where:
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αe, αµ : normalization factors

ri : distance from the vertex to the i-th PMT

θi : opening angle between the i-th PMT direction

and the ring direction

L : light attenuation length in water

f(Θi) : correction for the PMT acceptance as a function

of the photon incidence angle Θi

R : radius of the virtual sphere (16.9m)

Qexp(pe, θi) : expected p.e. distribution from an electron as a

function of the the electron momentum and the

opening angle

x : position of the muon along its track

xi : position of the muon along its track where

Cherenkov photons are emitted toward the i-th

PMT

qscatt
i (qknock

i ) : expected p.e.s for the i-th PMT from scattered

photons (knock-on electrons)

θ (θxi
) : Cherenkov opening angle of the muon at track

position x (xi)

The expected p.e. distribution distribution for an electron, Qexp(pe, θi), was ob-

tained through Monte Carlo studies. Note that scattered photons are accounted for

as well as direct photons by qscat
i .

The expected p.e. distribution for a muon is calculated analytically. The sin2 θ de-

pendence arises from the Cherenkov angle dependence of the intensity of the Cherenkov

photons. The term r(sin θ + r(dθ/dx)) takes into account the shrinking size of the
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Cherenkov angle as the particle loses momentum while it travels through the water.

Likelihood Calculation

The showering (e-like) and non-showering (µ-like) likelihood functions for the n-th

ring are defined as:

Ln(e, µ) =
∏

θi<(1.5×θC)

prob

(

qobs
i , qexp

i,n (e, µ) +
∑

n′ 6=n

qexp
i,n′

)

, (7.12)

where the product is over the PMTs inside the Cherenkov cone of the n-th ring

(1.5 × θC). qobs
i is the number of observed p.e.s in the i-th PMT, qexp

i,n (e or µ) is the

expected number of p.e.s in the i-th PMT coming from the n-th ring when assuming

the n-th ring was produced by either an electron or a muon. qexp
i,n′ is the same quantity,

only from the n′-th ring. The function prob(qobs
i , qobs

i ) gives the probability of detecting

qobs
i p.e.s in the i-th PMT given the expected amount, qexp

i . The qexp
i,n (e) and qexp

i,n (µ)

expectation values are optimized by altering the direction and opening angle of the

n-th ring to yield the maximum likelihood value.

The likelihood is translated into a χ2 parameter to allow it to be combined with

another estimator that uses the Cherenkov opening angle. The χ2 value is shown

below:

χ2
n(e, µ) = −2 log Ln(e, µ) + const. (7.13)

The probability for a ring to be of a particular type based on the light pattern is

then given by the following:

P pattern
n (e, µ) = exp

(

−(χ2
n(e, µ) − min[χ2

n(e), χ2
n(µ)])

2

2σ2
χ2

n

)

, (7.14)
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where σ2
χ2

n
=

√
2N is the approximate resolution of the χ2 distribution, N being the

number of PMTs used in the calculation.

The probability for a ring to be of a particular type based on the Cherenkov

opening angle is given by:

P angle
n (e, µ) = exp

(

−
(

θobs
n − θexp

n (e, µ)
)2

2(δθn)2

)

, (7.15)

where θobs
n and δθn are the reconstructed opening angle of the n-th ring and the fitting

error, respectively, and θexp
n (e or µ) is the expected opening angle of the n-th ring

based on the reconstructed electron-like or muon-like momentum.

The final probability calculation is simply the product of the light pattern prob-

ability calculation and the Cherenkov angle probability calculation:

P (e, µ) = P pattern(e, µ) × P angle(e, µ). (7.16)

The final showering likelihood variable used to determine whether a ring is of a

showering or non-showering type is defined as:

Lshow ≡
√

− log P (µ) −
√

− log P (e). (7.17)

Positive values of Lshow indicate a preference for the non-showering type, and negative

values indicate a preference for the showering type.

7.1.4 Ring Momentum

To calculate the momentum of the particle which produced the Cherenkov ring,

the integrated charge within a 70◦ half-opening angle is used. This integrated charge

is called RTOT , and is described below:
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RTOTn =
GMC

Gdata









α
∑

θi,n<70◦

−50 ns<ti<250 ns

(

qobs
i,n exp

(ri

L

) cos Θi

f(Θi)

)

−
∑

θi,n<70◦

Si









, (7.18)

where:

α : normalization factor

Gdata, GMC : relative PMT gain parameter for data and MC

θi,n : opening angle between n-th ring direction and

i-th PMT direction

ti : residual (= time of flight subtracted) hit time

of i-th PMT

L : light attenuation length of water

ri : distance from vertex position to i-th PMT

f(Θi) : correction function for PMT acceptance as a

function of photon incidence angle Θi

Si : expected amount of p.e.s from scattered pho-

tons for i-th PMT

The summation is restricted to a time window spanning −50 ns to +250 ns, where

0 ns represents the peak of the residual hit time distribution. The purpose of this win-

dow is to exclude light that may have originated from muon-decay electrons created

by muon decay.

After determining the RTOT value of a ring, the corresponding momenta for

various particle hypotheses is calculated by linearly extrapolating between points on

the look-up table shown in Fig. 7.6. This typically means finding the showering-like
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momentum (equivalent value for electron, positron, or gamma), and the muon-like

momentum. For the purposes of this study, a third particle type was added to the

list: the charged kaon. To generate the points in the look-up table, Monte Carlo

simulations of single ring events for each of the particle types were generated at

various true momentum values, and the mean RTOT value for the corresponding

true momentum was calculated and entered into the table. The kaon points were

generated specially for this study.

Figure 7.6: RTOT - momentum look-up table. The blue, upper set of crosses are for
electrons, the red, middle set of crosses are for muons, and the black, lower
set of crosses are for charged kaons.

The energy scale stability of the detector was tested by observing the mean re-

constructed energy of stopping cosmic ray muons and the decay electrons which they

produced (see Section 3.7.3 for details). It varied within ±0.88% during the SK-I

runtime.

The absolute energy scale was adjusted separately by observing the number of

photoelectrons generated by through-going cosmic ray muon events. A variety of
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calibration data were used to check the scale, such as stopping cosmic ray muons, the

decay electrons they produce, and the reconstructed invariant mass from π0 particles

produced in atmospheric neutrino interactions. By comparing these data samples to

Monte Carlo simulations, the absolute calibration error was estimated to be less than

±0.74% for the SK-I data taking period.

Ring Separation

In order to properly reconstruct the momenta of particles in a multi-ring event, the

charge collected by the PMTs must be correctly divided amongst the different rings.

This process is called ring separation. To perform the ring separation, a likelihood

function is used which describes the likelihood of the charge observed in a given PMT

to belong to a particular ring:

L =
∑

θi′,n<70◦

log

(

prob

(

qi′ ,
∑

n′

αn′ · qexp
i′·n′

))

, (7.19)

where qi′ is the observed amount of charge in the i′-th PMT, qexp
i′,n′ is the expected

amount of charge in the i′-th PMT coming from the n′-th ring, prob(qobs
i , qexp

i ) is the

probability function for detecting qobs
i charge in the i-th PMT given the total expected

amount qexp
i , and αn′ is the scaling factor for each ring. The scaling factor is used as

an optimization parameter, increasing or decreasing the amount of expected charge

from each ring such that the total amount expected best matches the observed value.

The observed p.e.s in the i-th PMT belonging to the n-th ring are obtained as:

qobs
i,n = qobs

i

αn · qexp
i,n

∑

n′ αn′ · qexp
i,n′

, (7.20)

where the optimization parameters, αn, have been chosen to maximize L.
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7.1.5 Ring Number Correction

Occasionally, a fake ring is identified and must be removed. To eliminate these

rings, the ring number correction algorithm is applied. Ring number correction re-

moves rings with a very small reconstructed momentum relative to any overlapping

rings.

7.1.6 Decay Electron Finding

The reconstruction algorithm for finding and identifying decay electrons catego-

rizes them in three ways:

• Sub-event type:

The decay electrons are observed in a separate event (sub-event).

• Primary-event type:

The decay electrons are observed in the primary event.

• Split type:

The decay electrons occurred around the end of the event timing window, and

is recorded in the primary event and sub-event.

Sub-event type decay electron events require the following criteria:

(1) The time interval from the end of a primary event is less than 20 µs.

(2) The total number of hit PMTs is greater than 50.

(3) The goodness of the vertex fit is greater than 0.5.

(4) The number of hit PMTs in a 50 ns time window is greater than 30.
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(5) The total number of p.e.s is less than 2000.

(6) The number of hit PMTs in a 50 ns time window is greater than 60.

where the requirement of 60 hit PMTs in 50 ns corresponds to about 11 MeV of

electron energy. The first criterion rejects gammas emitted from µ− captured on 16O

nuclei.

Primary-event type decay electron events require another peak after the primary

peak with more than 20 hits above the background level in a 30 ns time window.

Additional requirements for decay electron events are:

(7) the number of hit PMTs in a 30 ns time window is greater than 40 (primary-event

and split types only)

(7) 0.1 µs < ∆t < 0.8 µs or 1.2 µs < ∆t < 20 µs (all types)

where ∆t is the time between the primary peak and the decay electron peak. The

final criterion rejects decays in the inefficient time interval around 1 µs. The overall

efficiency for detecting decay electrons is 80% for µ+ and 63% for µ−.

7.2 Multiple Vertex Fitter

The MVFIT (multiple vertex fitter) algorithm is simple in principle. It first starts

a loop over each ring found by the standard Super-Kamiokande event reconstruction

algorithm used in the first step of ring reconstruction described in Section 7.1. As it

considers each ring in turn, it masks all light outside of the ring’s Cherenkov angle

+10◦ and subtracts any remaining light expected to have been contributed by other

overlapping rings. Section 7.1.3 and Section 7.1.4 describe how the expected charge is

calculated for each ring. With the masking applied, selected portions of the standard
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Super-Kamiokande event reconstruction algorithm are then applied to the remaining

light pattern, treating the unmasked light pattern as if it were actually from a single

ring event. After one ring is considered, the masking is undone and the process is

repeated for the next ring until all found rings in the event have been exhausted.

MVFIT reconstructs each ring according to three particle type hypotheses and

records the reconstructed particle information from each of the three hypotheses for

every ring in the event. These three particle hypotheses are (1) electromagnetic

showering-type particles (e± or γ), referred to in this study as gamma-like, (2) µ±,

referred to in this study as mu-like, and (3) K±, referred to in this study as kaon-like.

A summary of the MVFIT procedure that is repeated for each ring is described

below:

For each ring in an event:

(1) Mask all light outside θC + 10◦

(2) Subtract remaining expected light from overlapping rings

(3) For each PID hypothesis (gamma-like, muon-like, and kaon-like):

(a) Apply the vertex position and ring direction reconstruction algorithm de-

scribed in Section 7.1.1

(b) Apply the showering likelihood reconstruction algorithm described in Sec-

tion 7.1.3

(c) Apply the ring momentum reconstruction algorithm described in Section 7.1.4

(4) Store reconstructed variables for all three PID hypotheses

(5) Unmask all light in the event; continue on to next ring
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See Appendix A for the reconstructed variable resolutions obtained by MVFIT.

7.3 Reconstructed Ring Variables

By the end of the ring reconstruction process, each ring has associated with it a

list of variables with values corresponding to all three of the potential PID hypotheses,

along with the PID independent showering likelihood.

The final list of reconstructed ring variables is shown below:

1. Vertex Position (kaon-like, muon-like, and gamma-like)

2. Momentum (kaon-like, muon-like, and gamma-like)

3. Cherenkov Angle (kaon-like, muon-like, and gamma-like)

4. Direction (kaon-like, muon-like, and gamma-like )

5. Showering Likelihood (PID independent)



Chapter 8

Dinucleon Decay Signal

Before performing the search for dinucleon decay into kaons, three main decisions

had to be made in order to limit the types of experimental signal that would be

studied to a reasonably small set. The three decisions that ultimately defined the

signal in this search were:

• Choice of dinucleon decay mode

• Choice of kaon decay modes

• Choice of Cherenkov ring combinations

Once the acceptable signal event types were narrowed down, a comprehensive list of

descriptive characteristics was set down. This information then provided a platform

for the search methodology described in Chapter 9.

8.1 Choice of Dinucleon Decay Mode

At first glance, there appear to be three dinucleon decay modes with final state

kaons from which to choose: p p → K+ K+, p n → K+ K0, and n n → K0 K0. How-

ever, each K0 will decay with equal probability as either a K0
S or a K0

L. This is

92
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important because the subsequent decay of the kaons is a critical part of the experi-

mental signature.

The neutral kaons themselves emit no Cherenkov light. They can be detected

and reconstructed only through the signature of their respective decay products. It

turns out, however, that the majority of K0
L produced by dinucleon decay would often

travel outside of the detector before decaying (cτ = 15.3 m and β ∼ .8), thus being

rendered undetectable. The rate of regeneration was estimated to be too small to

appreciably increase the possible detection rate of K0
L. Thus, all of the K0

L dinucleon

decay modes can be immediately eliminated from consideration.

Table 8.1 shows the branching ratios for the most probable final kaon decay states

for all combinations of K+ and K0
S. The two most favorable decay modes of K+ and

K0
S were included in this analysis: K+ → µ+νµ (B.R. 64%); K+ → π+π0 (B.R. 21%);

K0
S → π+π− (B.R. 69%); K0

S → π0π0 (B.R. 31%). A 50% penalty is taken for

every appearance of K0
S, since the listed value is intended to measure the branching

ratio of the decay mode of the K0. A statistical factor of two has been folded into

the branching ratio of the final decay states where two identical nucleon decay via

different channels.

From Table 8.1 it can be seen that p p → K+ K+ has the greatest advantage

in final decay state branching ratios, with a maximum theoretical efficiency of 70%,

given the kaon decay modes that are considered. This is almost twice as large as

the total theoretically achievable efficiency of either of the other two dinucleon decay

modes, p n → K+ K0 and n n → K0 K0, with maximum efficiencies of 42% and 36%,

respectively. Thus, p p → K+ K+ was chosen for study in this analysis.
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Decay Mode Final State B.R.

p p → K+ K+

µ+νµ µ+νµ 40%
µ+νµ π+π0 26%
π+π0 π+π0 4%

total 70%

p n → K+ K0

µ+νµ π+π− 22%
µ+νµ π0π0 10%
π+π0 π+π− 7%
π+π0 π0π0 3%

total 42%

n n → K0 K0

π+π− π+π− 22%
π+π− π0π0 12%
π0π0 π0π0 2%

total 36%

Table 8.1: Final state branching ratios for dinucleon decay into kaons. 100% represents
the sum of all possible final decay states for a given dinucleon decay mode.

8.2 Choice of Kaon Decay Modes

At the next level of detail, the decision of which kaon decay modes to consider had

to be made. The complexity of this choice was compounded by the fact that the final

decay states of the signal events are a combination of two kaon decays. Helpfully, the

theoretical branching ratios of the kaon decay modes are well known, and could be

used to inform this decision.

Only the two most favorable K+ decay modes, K+ → µ+νµ and K+ → π+π0, were

selected for this search. The next most favorable decay modes are three-body decays

(e.g., K+
e3 and K+

µ3), which are significantly more challenging from an experimental

perspective. The three-body decay modes would have a total Cherenkov ring count

that would be beyond even the large number expected from the two chosen decay

modes, significantly complicating and reducing the accuracy of the event reconstruc-

tion process. Further, the three-body decay modes lack the powerful discriminating
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Decay Mode Final State B.R. (Calc.) B.R. (MC)

p p → K+ K+

µ+νµ µ+νµ 40% 30%
µ+νµ π+π0 26% 19%
π+π0 π+π0 4% 3%
sum of above 70% 52%

Table 8.2: Final state branching ratios for p p → K+ K+. The second branching ratio
(B.R.) column was obtained from the Monte Carlo, and thus includes ineffi-
ciencies due to hadronic interactions of the kaons.

Hadronic Interaction Probability per K+

Charge Exchange (K+ n → K0 p) 9.5%
Σ Resonance (K+ N → Σ π) 1.0%
Λ Resonance (K+ N → Λ π) 0.5%

Table 8.3: Hadronic interactions leading to detection inefficiencies in the simulated dinu-
cleon decay events.

power of the monochromatic momenta of the decay products seen in the chosen two-

body decay modes. All other K+ decay modes have insignificantly small branching

ratios, and were thus not considered in this study.

The combined final state branching ratios for the two chosen kaon decay modes can

be seen in Table 8.2, where the first numerical column shows the calculated branch-

ing ratio, and the second numerical column shows the branching ratio as obtained

from the Monte Carlo. The latter takes into account inefficiencies due to hadronic

interactions of the kaons, which are displayed in Table 8.3. The leading source of

hadronic interaction inefficiencies was found to be charge exchange occurring as the

kaon traveled through the water.
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8.3 Cherenkov Ring Combinations

Having chosen which dinucleon decay mode and which final kaon decay states

to consider, one last choice must be made to narrow down the signal characteristics

to a set that can be reasonably studied. The basis of the final choice is strictly

experimental in nature; it is to determine which of the various possible Cherenkov

ring combinations that could arise in a signal event to consider in the analysis.

8.3.1 Ring Counting Inefficiencies

An important experimental limitation that had to be considered was that the

Super-Kamiokande ring counting software has a built in maximum limit of five found

rings. That means that an ideal event of the final state 16O(pp) → 14C K+ K+ →

π+π0 π+π0 (two kaon rings, four gamma rings; see Section 8.4), could never have all

six rings reconstructed.

More confoundingly, the ring counting software also occasionally misses rings com-

pletely, as it was originally designed and optimized for atmospheric neutrino and single

proton decay (p → e+π0) events. Such events typically have at most two or three

easily distinguishable rings, and have less than half the amount of visible light in the

detector as would be seen in a dinucleon decay event.

Additionally, there was about a one in four chance that a kaon will decay in flight

(see Section 8.4.2), thus boosting its decay products along its direction of movement,

and therefore increasing the chance of creating significant ring overlap. Ring overlap

was another complication that taxes the abilities of the ring finding and reconstruction

software. Overlapping rings have a chance of being mistakenly identified as one single

ring with a reconstructed momentum larger than that of either of its true constituent

rings.
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Nring µ+νµ µ+νµ µ+νµ π+π0 π+π0 π+π0

1 5.6% 6.2% 2.8%
2 33.1% 23.5% 15.5%
3 44.9% 41.9% 38.9%
4 15.6% 24.5% 32.6%
5 0.8% 4.0% 10.2%

Table 8.4: Frequency of found ring count by final decay state. Each column sums to 100%.

Another factor to be considered was that about one fifth of the kaons are produced

below Cherenkov threshold, as shown in Fig. 8.3, due to the boost received as a result

of the Fermi momentum of the parent protons.

Table 8.4 shows the total ring count frequency for each of the chosen final decay

states. The combined effect of the sources of ring counting inefficiencies mentioned

above can be seen in the table. Ideally, one would expect to find 4 rings for K+K+ →

µ+νµ µ+νµ, and the maximum 5 rings for K+K+ → µ+νµ π+π0 and K+K+ →

π+π0 π+π0. Regardless, the ring counting software worked well enough with the

dinucleon decay events to continue the search and ultimately achieve a respectable

final signal efficiency.

Though a large fraction of the chosen signal events had only two found rings,

this category was dropped from further consideration across all final decay states.

The reason for this choice depended largely upon the fact that many of these events

contained in-flight kaon decays (hence the low ring count), which in turn decrease the

performance of the reconstruction process described in Chapter 9. In addition, the

amount of background to sort through would have been increased dramatically by

including two-ring events. Thus, only events with 3–5 rings were considered in this

search.
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Final State Nring 1 K+ 2 K+ 1 µ+ 2 µ+ 1 γ 2 γ 3 γ 4 γ

µ+νµ µ+νµ
3 60% 36% 42% 54% – – – –
4 17% 79% 14% 79% – – – –

µ+νµ π+π0

3 61% 9% 58% – 45% 49% – –
4 63% 28% 71% – 22% 64% – –
5 35% 54% 78% – 9% 54% – –

π+π0 π+π0 3 51% 6% – – 9% 52% 39% –
4 62% 15% – – 2% 22% 59% 17%

Table 8.5: Breakdown of true particle type frequency for rings generated in dinucleon
decay events. 100% represents all dinucleon decay Monte Carlo events of a
given final decay state.

8.3.2 True Particle Type Frequency

The next step in the process of narrowing down the accepted signal was to create

a table such as Table 8.5, which documents the frequency of rings generated by a

given true particle type in an event of a given final decay mode.

The table immediately revealed a feature common to all final decay states, which

was that there was at least one true kaon ring in an large majority of the signal events.

This turned out to be quite useful, as the kaon rings became the crux of the event

reconstruction process described in Chapter 9.

Next, only the events with at least one true kaon ring were considered, and all

of the possible ring combinations of these events were examined in Table 8.6. The

frequency of ring combinations are shown in the table as a percentage of all 16O(pp) →
14C K+ K+ Monte Carlo events.

In rank order by frequency of appearance in the p p → K+ K+ Monte Carlo, the

possible ring combinations with at least one true kaon are:

(1) K+ K+ µ+

(2) K+ µ+ µ+

(3) K+ γ γ

(4) K+ µ+ γ
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3 Rings
K+ K+ µ+ 7.4%
K+ µ+ µ+ 6.8%
K+ K+ γ 1.4%
K+ µ+ γ 4.1%
K+ γ γ 4.9%

4 Rings
K+ K+ µ+ µ+ 3.5%
K+ K+ µ+ γ 1.0%
K+ µ+ γ γ 3.2%
K+ K+ γ γ 1.0%
K+ γ γ γ 2.2%

5 Rings
K+ K+ µ+ γ γ 0.4%
K+ K+ γ γ γ 0.2%
K+ γ γ γ γ 0.6%

Table 8.6: Table of found ring combinations broken down by true particle type. Num-
bers are taken as a percentage of the total number of simulated 16O(pp) →
14C K+ K+ events. Note that the gammas originate from neutral pion decay
(π0 → γγ).

(5) K+ K+ µ+ µ+

(6) K+ µ+ γ γ

(7) K+ γ γ γ

(8) K+ K+ γ

(9) K+ K+ µ+ γ

(10) K+ K+ γ γ

(11) K+ γ γ γ γ

(12) K+ K+ µ+ γ γ

(13) K+ K+ γ γ γ

To perform the final pruning of this list, the event reconstruction performance and

the characteristics of the atmospheric neutrino background had to be considered.

In order to be able to make a strong claim that even a single candidate event

found in the data is indeed a p p → K+ K+ event, strong evidence for two back-to-

back K+ was required, though the evidence did not necessarily need to come in the

form of two found K+ rings. For lack of a second found K+ ring in an event, a µ+

ring could take its place, as the µ+ could be required to fall into a narrow momentum

window corresponding to K+ decay. The µ+ ring would also be required to have a

reconstructed vertex point located where one would have expected the missing kaon

to have decayed, derived from the single found kaon ring’s vertex position and ring

direction.

A γ ring, however, was not considered a suitable substitute for a missed kaon

ring. Firstly, the momentum window of the true γ rings was too large to be a reliable
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indicator of K+ decay. Secondly, the reconstructed vertex resolution for γ rings was

too large (see Section A.3) to be a reliable indicator of the expected event topology

corresponding to the back-to-back dinucleon decay kaons.

8.3.3 Final List of Ring Combinations

The final consideration weighed the gain in signal efficiency achieved by including

a particular ring combination against the estimated amount of effort required to

accurately reconstruct the event, along with the estimated background that would

accrue by including said ring combination. As a general rule for this search, the more

gamma rings there were in the event, the more difficult it would be to accurately

reconstruct, and the more background one would have to contend with.

Thus, with all of the above considerations in mind, the ring combinations K+ µ+

γ, K+ γ γ, K+ γ γ γ, K+ K+ γ γ γ, and K+ γ γ γ γ were eliminated. This left the

final list of signal event ring combinations, referred to as event categories in the event

reconstruction process, that were searched for in this analysis:

• K+ K+ µ+

• K+ µ+ µ+

• K+ K+ µ+ µ+

• K+ µ+ γ γ

• K+ K+ γ

• K+ K+ µ+ γ

• K+ K+ γ γ

• K+ K+ µ+ γ γ

8.4 Signal Characteristics

The characteristics of the p p → K+ K+ signal events were very distinct compared

those of the atmospheric neutrino background events. In a dinucleon decay event,
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both of the kaons are ejected from the parent nucleus in a back-to-back configuration,

traveling a distance of up to 1.3m before coming to a stop and eventually decaying.

The kaons each would have a sufficient momentum to emit a detectable amount of

Cherenkov light, and at least one of each kaon’s decay products would in turn emit

Cherenkov light of its own.

Figure 8.1 shows an illustration of an idealized p p → K+ K+ event, where one

kaon has decayed via K+ → π+π0, and the other via K+ → µ+νµ. Note that the

π0 is represented as two γ’s. This is because the π0 decays at a rate fast enough

that the distance it travels before it decays is unresolvable in a detector, therefore

the resultant γ’s can be considered to originate from the same vertex point as their

parent π0.
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Figure 8.1: A cartoon illustration of an ideal p p → K+ K+ event. Dashed lines represent
undetectable particles.

In total, there are three discernible particle vertices in a p p → K+ K+ event: one

shared by the kaons at the point of the dinucleon decay, and one additional vertex

at the point of each kaon decay. These vertices would be separated by distances that

are resolvable in Super-Kamiokande, and they all would lie approximately along the

axis of the back-to-back kaons.

All of this together presents an incredibly unique event geometry. When com-
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bined with kinematic information and other characteristics of the event’s constituent

rings, the result is an event signature that is quite difficult to mistake, when well

reconstructed.

8.4.1 Multiple Vertices

One of the most distinguishing aspects of the dinucleon decay signal is the fact

that it contains three distinct vertices where Cherenkov light emitting particles are

produced, separated by distances resolvable by the detector (∼ 1 m). The first vertex

comes from the point where the dinucleon decay itself occurs. This vertex point is

shared by both of the outgoing kaons. The second and third vertex points occur at

the decay points of the two kaons.

Figure 8.2 shows the distance between the kaon decay point and the original

dinucleon decay vertex. Also shown is the distance between the two kaon decay

points in each event. As expected, the distance between the kaon decay points had

a peak near twice the distance of the first plot due to the back-to-back directionality

of the kaons, with a sharp fall off at larger distances.
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Figure 8.2: Left: The true distance between the kaon decay point and the dinucleon decay
point. Right: The true distance between the two dinucleon decay points within
the same event.
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8.4.2 Kaon Rings

Another distinctive feature of the signal events was the presence of Cherenkov

rings produced by charged kaons. Figure 8.3 shows the true momentum distribution

for the K+ produced in the dinucleon decay Monte Carlo. About 77% of the kaons

were produced above Cherenkov threshold. This feature is atypical not only when

compared to the atmospheric neutrino background, but also when compared to any

study previously performed at Super-Kamiokande. For this reason it required the

addition of new reconstruction tools, as described in Section 7.1.4.
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Figure 8.3: The momentum distribution of the outgoing kaons produced by the dinucleon
decay reaction 16O(pp) → 14C K+ K+ in the Monte Carlo. The line represents
the Cherenkov threshold for K+, 563MeV/c.

Unfortunately, it was difficult to distinguish kaon rings from muon rings on an

individual basis, as they are both non-showering particles. There was a further un-

fortunate similarity between the kaon and muon rings in the dinucleon decay signal

events that prevents their respective well-determined momenta from being used as an

identifying feature.

It happens that the kaon-like reconstructed momentum of the true µ+ rings in the
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dinucleon decay signal fell right in the expected true K+ momentum window, and vice

versa for the muon-like momentum of the true K+ rings. This can be understood by

considering the RTOT-momentum look-up table used in the momentum reconstruc-

tion process, shown in Fig. 7.6. The peak kaon momentum is about 800 MeV/c, while

the peak muon momentum is 236 MeV/c. Both of these yield a very similar RTOT

value of roughly 500 p.e. Fortunately, the event topology was able to help inform

the ring classification, as described in detail in Chapter 9, and the kaon rings in the

signal were yet able to be identified with very high fidelity.

8.4.3 Back-to-Back Kaons

Besides the mere presence of Cherenkov rings generated by charged kaons, the

back-to-back directionality of the kaon rings is also a distinct feature of dinucleon

decay. Figure 8.4 shows the cosine of the opening angle between the true directions of

the kaons. It peaks sharply at −1, though there is a tail due to the Fermi momentum

of the parent protons, as well as the effect of correlated decay (see Section 5.1).

Roughly 93% of the kaon pairs had an opening angle between them of greater than

154◦ (i.e., cos(θ) < −0.9).

8.4.4 Features of Kaon Decay Modes

Each of the final decay modes of the kaons had its own set of unique features,

described in this section.

K+ → µ+νµ Features

In the muon decay mode, K+ → µ+νµ, the outgoing particles are emitted back-

to-back from the kaon decay point, each with a momentum of precisely 236 MeV/c.
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Figure 8.4: Cosine of the opening angle between the true directional vectors of the out-
going kaons.

This is above Cherenkov threshold for the muon (pthresh[µ
±] = 120 MeV/c), giving

the particle a Cherenkov angle of 34.6◦. The neutrino leaves the tank without being

detected.

Figure 8.5 shows the distribution of true muon momenta produced by the decay

mode K+ → µ+νµ in the dinucleon decay Monte Carlo. The peak at 236 MeV/c

corresponds to the monochromatic momentum resulting from a kaon decaying while

at rest. The momentum values that differ from 236 MeV/c occurred when the parent

kaon decayed in flight before it could come to a stop through ionization energy loss.

These off-peak muons accounted for about 27% of all muons in the dinucleon decay

Monte Carlo that were produced through kaon decay.

K+ → π+π0 Features

In the pion decay mode, K+ → π+π0, the outgoing particles are again emitted

back-to-back, this time with a precise momentum of 203 MeV/c. However, the π0

immediately (τ = 8.4 × 10−17 s) decays into two gammas, each of which is boosted
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Figure 8.5: True momentum distribution of muons produced by the kaon decay chan-
nel K+ → µ+νµ in the dinucleon decay Monte Carlo. The line represents
the Cherenkov threshold for µ+, 120MeV/c. The peak corresponds to the
monochromatic momentum of 236MeV/c resulting from a kaon decaying while
at rest. The off-peak values are from in-flight decays of the parent kaons.

along the direction of the parent pion. This gives the gammas momenta ranging from

20 MeV/c to 227 MeV/c, as shown in Fig. 8.6, with a small tail resulting from in-flight

kaon decays.

The π+, on the other hand, have a precisely determined momentum of 203 MeV/c,

which is barely above Cherenkov threshold (pthresh[π
±] = 160 MeV/c). The small

number of Cherenkov photons produced by the π+, however, get drowned out by the

copious amount of light produced by all of the other visible particles in the dinucleon

decay event. The π+ is effectively undetectable, and therefore no attempt was made

to search for any rings produced by π+ in this analysis.
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Figure 8.6: True momentum distribution of gammas produced by the kaon decay channel
K+ → π+π0 in the dinucleon decay Monte Carlo. The range of momenta
produced by decays while the kaon is at rest is 20–227MeV/c. The tail is from
in-flight decays of the parent kaons. Gammas are EM showering particles,
thus will always yield detectable Cherenkov light for any energy above a few
MeV/c.



Chapter 9

Dinucleon Decay Search

The underlying methodology of the search was to hypothesize that each event

analyzed was generated by dinucleon decay into kaons, and then compare how well

the event’s reconstructed variables matched the expected values for a genuine signal

event, as determined by the dinucleon decay Monte Carlo.

The search was performed in four steps. The first (and most involved) step was

to classify all found rings in an event as either kaon, muon, or gamma candidate

rings. The second step was to categorize the event based on the classification of

its constituent rings. In the third step, several precuts were applied which reduce

the background and “cleaned up” the signal without reducing the search efficiency

too much. Finally, in the fourth and final step, thirty-seven reconstructed variables

were all combined into a single discriminatory variable through the use of a boosted

decision tree. A final cut was placed on the output of the boosted decision tree which

was used to define the final accepted signal-like sample.

108
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9.1 Ring Classification

The ring classification stage depended upon the hypothesis that the observed

rings in an event arose from the reaction 16O(pp) → 14C K+ K+, where the kaons

then decayed via K+ → µ+νµ or K+ → π+π0. Under this assumption, the topology

of the event may inform the choice of ring classification in a powerful way.

The term “ring classification” is used in this analysis, whereas “particle identifica-

tion” (or “PID”) is not. This was a conscious choice to reflect that rings were being

matched up with the most appropriate particle type based on the hypothesis that

the event is indeed a dinucleon decay event. This should yield correct results for the

signal events, however the particle type assignments should be incorrect almost by

design when considering background atmospheric neutrino events. Hence the term

“PID” was deemed somewhat inappropriate to use in this stage of the search.

In more conventional Super-Kamiokande analyses, PID is performed at the in-

dividual ring level, essentially only taking into account whether or not the particle

is of a showering or non-showering type. The former would indicate an electron,

positron, or gamma, and the latter would indicate a muon or a heavier charged par-

ticle. This level of distinction is nearly always sufficient for the studies performed at

Super-Kamiokande.

In the case of dinucleon decay into kaons, however, rings generated by charged

kaons would be identified as non-showering, but no further disambiguation could be

made between said kaon rings and rings generated by muons based on their respective

showering likelihoods alone. This was the motivating factor behind incorporating

topology into the ring classification process.

The next important assumption regarded which of the Cherenkov light producing

particles in a given dinucleon decay event were most likely to be found. Table 9.1, Ta-
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ble 9.2, and Table 9.3 show the frequency of finding a given number of rings produced

by kaons, muons, and gammas in the dinucleon decay Monte Carlo, respectively. The

entries in the tables are organized by final state and the total number of rings found

in an event. Note that the γ’s were the by-products of the π0 produced by the decay

of the K+.

Final State Nring 0 K+ 1 K+ 2 K+ ≥ 1 K+

µ+νµ µ+νµ
3 4% 60% 36% 96%
4 4% 17% 79% 96%

µ+νµ π+π0

3 30% 61% 9% 70%
4 9% 63% 28% 91%
5 11% 35% 54% 89%

π+π0 π+π0 3 44% 51% 6% 56%
4 23% 62% 15% 77%

Table 9.1: Frequency of rings produced by kaons in p p → K+ K+ Monte Carlo events.

Final State Nring 0 µ+ 1 µ+ 2 µ+ ≥ 1 µ+

µ+νµ µ+νµ
3 4% 42% 54% 96%
4 7% 14% 79% 93%

µ+νµ π+π0

3 42% 58% – 58%
4 29% 71% – 71%
5 22% 78% – 78%

Table 9.2: Frequency of rings produced by muons in p p → K+ K+ Monte Carlo events.

Final State Nring 0 γ 1 γ 2 γ 3 γ 4 γ ≥ 1 γ

µ+νµ π+π0

3 6% 45% 49% – – 94%
4 14% 22% 64% – – 86%
5 37% 9% 54% – – 63%

π+π0 π+π0 3 0% 9% 52% 39% – 100%
4 0% 2% 22% 59% 17% 100%

Table 9.3: Frequency of rings produced by gammas in p p → K+ K+ Monte Carlo events.
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An important feature that can be seen in Table 9.1 is that there was at least one

ring produced by a kaon in the majority of all dinucleon decay events of the three

chosen final states. The ring classification algorithm took advantage of this fact and

used the kaon rings as the cornerstone of the full classification process.

9.1.1 Two Kaon Ring Classification

The key to ring classification and the overall event reconstruction in this search

was to first identify the kaon candidate ring(s) in the event. Accordingly, the first

priority of the ring classification process was to determine whether or not there are

two rings that can be classified as kaon candidates. This was done by considering the

pair of rings with the largest opening angle between their directions and checking to

see whether they satisfied the following criteria:

(1) the opening angle must be > 154◦

(2) the vertex separation must be < 640 cm

(3) the showering likelihood of both rings must be > −2.4

(4) the Cherenkov angle of both rings must be < 40◦

(5) the invariant mass must be < 1940 MeV/c2

(6) the total momentum must be < 400 MeV/c

where the last three items were all calculated using the kaon-like values for both rings.

Figure 9.1 shows the distributions of the variables used in the two-kaon classifica-

tion process for the dinucleon decay Monte Carlo. Each entry represents either the

pair of rings with the largest opening angle between their directions in a given event
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(e.g., the reconstructed invariant mass), or one of those two rings counted individually

(e.g., the showering likelihood).

9.1.2 Kaon Decay Product Ring Classification

After the two kaon candidates have been identified, the next step was to classify

all of the remaining rings in the event as one of the two possible kaon decay product

ring types, muon or gamma. This step of the classification relied heavily upon the

geometric relationship between the kaons and their decay products. See Fig. 8.1 for

an illustration of the dinucleon decay event geometry.

The primary instrument in this step of the classification was the impact parameter

for each particle type hypothesis. The impact parameter was defined as the distance

between the vertex of a kaon decay product candidate ring and an infinite line drawn

along the directional vector of the most likely parent kaon candidate. See Fig. 9.2 for

an illustration of the impact parameter.

The particle type hypothesis which yielded the smallest impact parameter became

the classification of the ring. Figure 9.3 shows the impact parameters for all true µ+

and γ rings in the dinucleon decay Monte Carlo as calculated using both the muon-

like and gamma-like vertex of every ring. The difference between the incorrect and

correct impact parameter can be seen in Fig. 9.4. The positive entries in this plot

represent rings where the correct classification would be assigned using the impact

parameter method.

To further refine the performance of the kaon decay product ring classification,

all muon and gamma candidate rings were also required to satisfy the type-specific

criteria listed below:

• Muon candidates: 200 MeV/c < muon-like momentum < 300 MeV/c
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Figure 9.1: Reconstructed variables used in the two-kaon classification process. Kaon-
like variables were used in all applicable plots. The dashed lines show the
subset of events where the rings were actually generated by two kaons, and
the dotted lines show the subset of events where the rings were generated by
other particles (including events where only one of the rings from the pair was
a true kaon ring). Vertical lines indicate the two-kaon classification criteria.
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Figure 9.2: Illustration of the impact parameter variable used in the classification of the
kaon decay product candidate rings. The illustration shows part of a recon-
structed event where one kaon decayed via K+ → µ+νµ. The circles represent
reconstructed vertices and the arrows represent reconstructed ring directions.
The correct classification has been chosen for the true K+ ring, and the im-
pact parameter is shown for both possible classifications of the true µ+ ring.
The correct classification yields a smaller impact parameter.

 rings (cm)+µimpact of true 
0 100 200 300 400 500 600 700

rin
gs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200 Muon­Like Vertex

Gamma­Like Vertex

 rings (cm)γimpact of true 
0 100 200 300 400 500 600 700

rin
gs

0

500

1000

1500

2000

2500

3000
Muon­Like Vertex

Gamma­Like Vertex

Figure 9.3: Impact parameter calculated using both the muon-like and gamma-like ver-
tices of all true muon (left) and gamma (right) rings from the dinucleon decay
Monte Carlo. Solid lines indicate the muon-like reconstructed vertex was
used in the calculation of the impact parameter, and dashed lines indicate the
gamma-like reconstructed vertex was used.
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Figure 9.4: The difference between the impact parameter as calculated using the incorrect
and the correct reconstructed vertex for all true muon and gamma rings.
A positive value indicates that the correct particle type yielded the smaller
impact parameter, thus would be chosen by the ring classification algorithm.
The dashed line represents the true muon rings, and the solid line represents
the true gamma rings from the dinucleon decay Monte Carlo.

• Gamma candidates: gamma-like Cherenkov angle > 30◦

Figure 9.5 shows the distributions of the variables used in the criteria above.

The overall performance evaluation for kaon decay product ring classification was

estimated by assigning the correct classification to all kaon rings in every event (i.e.,

the kaons are assumed to have been properly classified), and then applying the impact

parameter method plus the secondary particle-specific criteria. The approximate mis-

classification rates under the given assumptions were about 20% for true muon rings

and 28% for true gamma rings. The reason γ rings were more often mis-classified is

because the reconstructed vertex resolution was somewhat worse than that of muon

rings (see Appendix A).

9.1.3 Pion Classification

If the kaon decay product classification process classified two rings from the same

parent kaon as gamma candidates, they were then taken to be from the same original
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Figure 9.5: Reconstructed variables used in the secondary criteria of the kaon decay prod-
uct classification process. Left: Reconstructed muon-like momentum of all
rings in the dinucleon decay Monte Carlo. Right: Reconstructed gamma-like
Cherenkov angle of all rings in the dinucleon decay Monte Carlo. In both
plots, the dashed line represents the true muon (left) or gamma (right) rings,
and the dotted line represents all other rings. The vertical lines indicate the
classification criteria.

π0. The π0 was reconstructed in full and considered to be the kaon decay product. Its

vertex was taken to be the spatial average of the reconstructed gamma-like vertices

of its two constituent gamma rings.

9.1.4 Low Gamma Momentum Correction

A final correctional step was taken to catch true muon rings that have been mis-

classified as gamma candidates. This was done when the total momentum of all

gamma candidate rings was less than 100 MeV/c. If there was only one gamma can-

didate ring, it was reassigned as a muon candidate, as long as there were not already

two muon candidates in the event. If there were two gamma candidates, the most

non-showering ring was reassigned as a muon candidate first, and then the second.

Again, the rule was held where there can be no more than two muon candidates in a

single event. If there existed two muon candidates when the algorithm was attempt-

ing to reassign a current gamma candidate, the ring simply remained as a gamma

candidate.
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9.1.5 Single Kaon Ring Classification

If an event failed to meet the two-kaon search criteria outlined in Section 9.1.1,

the single-kaon search criteria was then applied. About 23% of the kaons produced

in dinucleon decay events had momenta below Cherenkov threshold and about 27%

decay in flight, reducing the performance of the reconstruction software. For these

reasons, events with only a single found kaon ring represented a significant enough

portion of the signal that it entailed the creation of an additional algorithm designed

to classify the rings in such events.

To find the most appropriate kaon candidate in the event, each ring was considered

in turn as the “test” kaon candidate, as long as its kaon-like Cherenkov angle was

< 40◦ (see Fig. 9.6). The other rings in the event were forced to conform to the most

appropriate kaon decay product test classifications under the assumption that the

test kaon candidate ring was a true kaon ring. The test decay product classifications

were determined by the algorithm set forth in Section 9.1.2. A variable called the

“linearity” was then calculated for the test kaon candidate, effectively representing

the likelihood that a given ring was from a true dinucleon decay kaon.
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Figure 9.6: Reconstructed kaon-like Cherenkov angles for all rings in the dinucleon decay
Monte Carlo. The dashed line represents the true kaon rings, and the dotted
line represents all other rings. The vertical line represents the single-kaon
classification criteria.
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The linearity quantifies the linear geometry of the event, given the current test

ring classifications. The linearity was calculated by first taking the cosine of the angle

formed between a line drawn from the test kaon candidate’s kaon-like vertex point to

one of the test kaon decay product candidates’ appropriate reconstructed vertex point

and the directional vector of the test kaon candidate. This value was then multiplied

by the cosine of the angle formed by the test kaon candidate’s direction vector and

the line between its vertex and the other decay product candidate ring’s appropriate

vertex. Figure 9.7 shows an illustration of how the linearity was determined. The

more well aligned all of the vertices were along the test kaon candidate’s direction,

the more negative this value would be. A perfectly linear configuration would yield

a linearity value of −1.
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Figure 9.7: Illustration of the linearity variable used in the single-kaon classification pro-
cess. The illustration shows reconstructed K+K+ → µ+νµ µ+νµ event where
the correct classification has been chosen for the three found rings (K+, µ+,
µ+). The second kaon is here assumed to have been produced below Cherenkov
threshold. The circles represent the reconstructed vertices, and the arrows
represent the reconstructed directions. The linearity for the visible kaon can-
didate ring is defined as cos θ1 · cos θ2.

Figure 9.8 shows the difference between the linearity calculated for every true

gamma and muon ring and the true kaon ring in the same event, for all events in the

dinucleon decay Monte Carlo which had only one true visible kaon ring. Entries with

positive values represent events where the true kaon ring would have been chosen

over the other rings in the event as the kaon candidate. Fifty-seven percent of the
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dinucleon decay Monte Carlo events which contained only one true kaon event were

correctly classified as a single kaon event. Of those, 94% correctly identified the true

kaon ring as the kaon candidate.
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Figure 9.8: Difference in linearity between true muon and gamma rings and true kaon
rings. Positive values indicate the true kaon ring was favored over the other
ring as the kaon candidate.

9.2 Event Categorization

The event categorization process is simply the process of labeling each event ac-

cording to the classifications of its constituent rings. For example, an event in which

two rings were classified as kaon candidates, and one ring was classified as a muon

candidate would be categorized as a “K+ K+ µ+” event.

If at least one ring was not able to be classified as either a kaon, muon, or gamma

candidate by the classification algorithms described in Section 9.1, then the event is

simply categorized as an “other”-type event.
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9.3 Precuts

After the ring classification and event categorization processes, several precuts

were applied with the goal of eliminating easily identifiable background and restricting

signal sample to events which were well reconstructed while retaining as large an

efficiency as possible. The precuts are listed below:

(1) 1000 < POTOT < 11000, where POTOT is the total amount of light seen in the

ID in units of p.e.

(2) 3 ≤ NRING ≤ 5, where NRING is the number of found rings in the event.

(3) 0 ≤ NDCY E ≤ 2, where NDCY E is the number of found decay electrons.

(4) WALL > 200 cm, where WALL is the distance from the event vertex to the

nearest wall; this is the fiducial volume (FV) cut.

(5) And finally, the event category must fall into one of the eight accepted dinucleon

decay event categories listed in Section 8.3.3.

Figure 9.9 shows the distributions of the reconstructed variables used in the pre-

cuts.

The first three precuts were intended to retain roughly all of the signal while

significantly reducing the background, which had a much wider spread in POTOT

than the signal, and an event count distribution that fell rapidly with increasing ring

count. The decay electron count was limited to the maximum number we would

expect from the dinucleon decay signal events.

The fiducial volume cut was applied to ensure optimal and uniform reconstruction

resolution throughout the target region. Further, it created a well-defined boundary

with a volume that was simple to calculate. Both of these factors were crucial in the
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Figure 9.9: Reconstructed variables used in the precuts. From top-left to bottom-right:
POTOT , NRING, NMUEDCY , and WALL. The solid lines indicate the
p p → K+ K+ Monte Carlo, the dashed lines indicate the atmospheric neutrino
Monte Carlo, and the markers indicate the SK-I data. Vertical lines indicate
the boundaries of the precuts.

estimation of the total exposure. The fiducial volume was defined as the region in

the ID that is at least 200 cm from the nearest wall.

Finally, the event category requirement ensures that the event was well recon-

structed, and limits the search to categories that are most likely to come from a true

dinucleon decay event. See Section 8.3 for a more detailed explanation of why these

particular event categories were chosen.

Table 9.4 shows signal efficiency, expected background, and data events passing

the precuts, broken down by event category. The total efficiency for the signal after

applying the precuts was 21.9%. The total expected background was 33.9 events after

normalizing to the SK-I livetime. The total number of events in the SK-I data passing
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the precuts was 27.

Event Category
p p → K+ K+ M.C. Atmospheric ν M.C. SK-I Data

efficiency (%) events / SK-I livetime events
K+ K+ µ+ 6.1 0.6 0
K+ µ+ µ+ 5.6 6.1 5
K+ K+ γ 1.1 0.4 0
K+ K+ µ+ µ+ 2.7 0.0 0
K+ K+ γ γ 0.6 0.3 0
K+ µ+ γ γ 4.6 26.1 22
K+ K+ µ+ γ 1.1 0.3 0
K+ K+ µ+ γ γ 0.2 0.1 0
total 21.9 33.9 27

Table 9.4: Signal, background, and data after applying precuts.

The event category in which the SK-I data and the expected background rate dif-

fered the most was K+ µ+γ γ, where the atmospheric neutrino Monte Carlo predicted

26 events of background, and only 22 such events were found in the data. Using Pois-

son statistics, the probability of seeing 22 or fewer events given the expected value of

26 is about 20%.

Table 9.5 summarizes background Monte Carlo events which survived the precuts

by neutrino flavor and weak current type, and Table 9.6 shows the breakdown of

neutrino interaction types of the surviving background. Charged current (CC) and

neutral current (NC) muon neutrino events made up the majority of the background

after the precuts. Single and multi-pion interactions were the dominant interaction

types.

9.4 Multi-Variate Analysis

For the final portion of the analysis, a multi-variate approach was taken to increase

the sensitivity of the search. Multi-variate techniques were considered appealing for
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ν Mode Events/200 Years Events/1489.2 Days %
CC νµ 1654 13.5 41
NC νµ 1303 10.6 32
CC νe 588 4.8 14
NC νe 517 4.2 13
total 4062 33.1 100

Table 9.5: Remaining background Monte Carlo events after precuts sorted by neutrino
flavor and weak current type. CC: Charged Current; NC: Neutral Current.
The first numerical column shows the unscaled number of events from the 200
year analysis sample. The second numerical column shows the number of events
scaled to the SK-I livetime.

Interaction Events/200 Years Events/1489.2 Days %
CC single pion delta resonance 942 7.7 23.2
CC multi-pion production 896 7.3 22.0
NC multi-pion production 660 5.4 16.2
NC diffractive pion production 549 4.5 13.5
NC single pion delta resonance 542 4.4 13.3
CC diffractive pion production 265 2.2 6.5
CC quasi-elastic 104 0.9 2.6
NC elastic 49 0.4 1.2
CC coherent pion production 35 0.3 0.9
NC coherent pion production 20 0.2 0.5
total 4062 33.1 100

Table 9.6: Remaining background Monte Carlo events after precuts sorted by neutrino
interaction type. CC: Charged Current; NC: Neutral Current. The first nu-
merical column shows the unscaled number of events from the 200 year analysis
sample. The second numerical column shows the number of events scaled to
the SK-I livetime.

this study due to their ability to simultaneously analyze many different discriminatory

variables spanning many different event categories. This would be extremely difficult

to accomplish using a simple cuts-based analysis, such as the one used in the p → e+π0

search, which hinges largely upon the combined discriminating power of only two

variables: the invariant mass and the total momentum of the system.
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After some consideration, a boosted decision tree was chosen to be used as the

multi-variate tool for this analysis. Several factors played in this decision. First,

the performance of a boosted decision tree is not degraded by the addition of weakly

discriminating variables [74]. If a variable is so weakly discriminating as to be useless,

it is simply not used by the boosted decision tree.

Second, a boosted decision tree will be unhindered by variables that may have

trivial values for some events. This is accomplished through the use of a trivial bin

designated by the user. For example, an event which has only one kaon candidate ring

might be assigned a meaningless value of −10 for its reconstructed dinucleon mass

variable during the classification and categorization stage of the analysis. Thus if the

boosted decision tree were to place a cut at 0 on this variable, it would effectively

be the same as cutting on whether or not an event had two kaon candidates. This

technique requires that the trivial bin be outside of the region of interest for the non-

trivial entries, though it shouldn’t be too far from the region of interest, or else the

binning resolution of the variable will be degraded. In a multi-variate analysis, every

event has to have some value for every variable, so the technique of using a trivial

bin is particularly useful in this analysis because it allows events of all categories to

be processed by the same boosted decision tree.

Finally, boosted decision trees have a proven track record in background domi-

nated studies in the world of particle physics [75–77].

The process of creating and applying the boosted decision tree was accomplished in

three stages: training, testing, and analysis. Each stage required its own independent

set of signal and background Monte Carlo. As such, the atmospheric neutrino and

dinucleon decay Monte Carlo sets were both divided into three roughly equal portions

as described in Table 9.7. The actual SK-I data was only ever used in the final stage

of performing the analysis, thus required no splitting.
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Monte Carlo Training Testing Analysis
p p → K+ K+ 25,000 events 25,000 events 25,000 events
Atm. ν 150 years 150 years 200 years

Table 9.7: Division of the Monte Carlo in the multi-variate portion of the analysis.

9.4.1 Input Variables

In total, 37 variables were chosen to be used as inputs for the boosted decision

tree. The names of these variables along with a brief description of each follow:

Variables related to the reconstructed dinucleon

• rec dinuc mass: The reconstructed dinucleon pair mass. Expected to peak

near the sum of the true mass of two nucleons, roughly 1900 MeV/c2, for signal

events, and random for background events, which never contain two true kaons

produced by dinucleon decay.

• rec dinuc mom: The reconstructed dinucleon pair momentum. Expected to

be small (around 200 MeV/c) for signal events, and be random for background

events, which never contain two true kaons produced by dinucleon decay.

• k cand vtxsep: The separation of the vertices of the kaon candidates which

make up the reconstructed dinucleon. Expected to be small for signal events,

and random for background events, which never contain two true kaons pro-

duced by dinucleon decay.

Variables related to the reconstructed π0
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• rec pi0 mass: The reconstructed π0 mass. Expected to peak at the true mass,

135 MeV/c2, for signal events, and be somewhat random for background events,

which may contain true pions, but are reconstructed under a false hypothesis.

• rec pi0 mom: The reconstructed π0 momentum. Expected to peak around

206 MeV/c for signal events, and have a random distribution for background

events, which do not contain monochromatic pions produced by kaon decay.

• g cand vtxsep: The separation of the vertices of the gamma candidates which

make up the reconstructed π0. Expected to be small for signal events, and

somewhat random for background events, which are reconstructed under a false

hypothesis.

• rec pi0 impact: The impact parameter of the reconstructed π0. Expected to

be small for signal events and larger for background events, which are recon-

structed under a false hypothesis.

• g cand totmom: The total momentum of all gamma candidates. Expected

to peak around 206 MeV/c for signal events, where it is assumed that both

true gamma rings are reconstructed as a single ring in events with only one

gamma candidate. Background events, which do not contain monochromatic

pions produced by kaon decay, are expected to have a random distribution.

Variables related to the reconstructed momentum

• k cand mom[0,1]: The reconstructed momentum of the kaon candidates. Ex-

pected to peak roughly around 800 MeV/c for signal events, and have a random

distribution for background events, which almost never even contain true kaons.
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• mu cand mom[0,1]: The reconstructed momentum of the muon candidates.

Expected to peak at 236 MeV/c for signal events, and have a random distribution

for background events, which do not contain monochromatic muons produced

by kaon decay.

• g cand mom[0,1]: The reconstructed momentum of the gamma candidates.

Expected to have a distribution consistent with a monochromatic π0 with a

momentum of 207 MeV/c (about 20–230 MeV/c) for signal events, and have a

random distribution for background events, which do not contain monochro-

matic pions produced by kaon decay.

Variables related to the reconstructed Cherenkov angle

• k cand cang[0,1]: The reconstructed Cherenkov angle of the kaon candidates.

Expected to be roughly around 30◦ for signal events, and have a random distri-

bution for background events, which almost never even contain true kaons, let

alone kaons produced by dinucleon decay.

• mu cand cang[0,1]: The reconstructed Cherenkov angle of the muon candi-

dates. Expected to be roughly around 35◦ for signal events, and have a random

distribution for background events, which do not contain monochromatic muons

produced by kaon decay.

• g cand cang[0,1]: The reconstructed Cherenkov angle of the gamma candi-

dates. Expected to be roughly around 42◦ for signal events, and have a some-

what more random distribution for background events, which may contain pions,

but are reconstructed under a false hypothesis.
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Variables related to the showering likelihood

• k cand show[0,1]: The showering likelihood of the kaon candidates. Expected

to have a clear peak in the positive (non-showering) region for signal events,

and have a somewhat more random distribution for background events, which

are reconstructed under a false hypothesis.

• mu cand show[0,1]: The showering likelihood of the muon candidates. Ex-

pected to have a clear peak in the positive (non-showering) region for signal

events, and have a somewhat more random distribution for background events,

which are reconstructed under a false hypothesis.

• g cand show[0,1]: The showering likelihood of the gamma candidates. Ex-

pected to have a clear peak in the negative (showering) region for signal events,

and have a somewhat more random distribution for background events, which

are reconstructed under a false hypothesis.

Variables related to the event geometry

• mu cand impact[0,1]: The impact parameter of the muon candidates. Ex-

pected to be small for signal events and larger for background events, which are

reconstructed under a false hypothesis.

• g cand impact[0,1]: The impact parameter of the gamma candidates. Ex-

pected to be small for signal events and larger for background events, which are

reconstructed under a false hypothesis.

• decay vtxsep: The separation between the reconstructed vertices of the kaon

decay product vertices. Expected to be large (around 2.6 m) for signal events,
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and smaller in background events, which have one true vertex. This variable is

fairly accurate for background events despite their being reconstructed under

a false hypothesis. Their accuracy is due to the fact that the decay product

candidates are more likely to be correctly labeled as gammas and muons, thus

yielding accurate reconstructed information.

Variables related to the light pattern and the single vertex hypothesis

• total rtot mag: The magnitude of the vector sum of the light contained in

each ring from the event vertex (RTOT ). Expected to be small in signal events

due to the symmetry of the light pattern and larger in background events, which

tend to be less symmetric.

• total rtot dot k: The magnitude of the vector sum of the light contained

in each ring from the event vertex (called “rtot”) along the direction of the

brightest kaon candidate ring. Expected to be small in signal events due to

the back-to-back kaon rings of very similar momenta, and larger in background

events, which lack this feature.

• agood: The goodness of the standard vertex fitter, which assumes the event has

only one true vertex. Expected to be small for signal events, which have three

true vertices, and larger for background events, which have one true vertex.

• off vtx sep: The separation between the standard (“official”) reconstructed

event vertex and the dinucleon decay hypothesis event vertex. Expected to be

small for signal events due to the symmetry of the underlying event geometry,

and larger in background events, which are less symmetric and reconstructed

under a false hypothesis.
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Variables related to the decay electrons

• n dcy e: The number of found decay electrons. Expected to be larger for signal

events, which produce two true decay electrons, and smaller for background

events, which tend to produce fewer true decay electrons.

• dcy e vtxsep: The separation between the vertices of the found decay elec-

trons. Expected to be large (around 2.6 m) for signal events, and small (∼0 m)

for background events, which do not have true separated pion or muon vertices.

Figure 9.10 shows the input variable distributions for the analysis sample of the

p p → K+ K+ signal Monte Carlo, the analysis sample of the atmospheric neutrino

background Monte Carlo, and the SK-I data. The data and atmospheric neutrino

Monte Carlo are in good agreement overall.
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Figure 9.10: Distributions of the boosted decision tree input variables used to perform the
final analysis. Trivial bins have not been plotted. The solid line represents
the p p → K+ K+ Monte Carlo, the dashed line represents the atmospheric
neutrino Monte Carlo, and the crosses represent the SK-I data. This set of
plots shows variables related to the reconstructed dinucleon pair. No data
events were found to have two kaon candidates, thus there are no data entries
in this set of plots.
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Figure 9.10: (Continued...) This set of plots shows variables related to the reconstructed
π0.
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Figure 9.10: (Continued...) This set of plots shows the reconstructed momenta.
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Figure 9.10: (Continued...) This set of plots shows the reconstructed Cherenkov angles.
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Figure 9.10: (Continued...) This set of plots shows the showering likelihoods.
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Figure 9.10: (Continued...) This set of plots shows variables related to the geometry of
the event.
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Figure 9.10: (Continued...) This set of plots shows variables related to the symmetry of
the light pattern of the event, and the fitting goodness using a single vertex
hypothesis.
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Figure 9.10: (Continued...) This set of plots shows variables related to the found decay
electrons in the event.
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9.4.2 Training and Testing of the Boosted Decision Tree

A boosted decision tree is collection of individual decision trees that are created

in an iterative process one after another, each using reweighted training events based

on the performance of the previous tree in the chain. The complete collection of

individual decision trees is referred to as the forest. The details of the boosted decision

tree and how it is trained are described in further detail in Appendix B.

Figure 9.11 shows one of the decision trees from the forest of the boosted decision

tree used in this analysis. In this diagram, events start at the top node and travel

down the diagram until reaching one of the “signal-like” or “background-like” terminal

“leaf” nodes. An event which passes the cut at a given node is considered signal-like,

and travels to the right to the next node. Likewise, an event which fails the cut at

a given node is considered background-like, and travels to the left to the next node.

The output of each individual decision tree is +1 or −1, depending on whether the

path traversed by an event ends on a signal-like or background-like terminal leaf node,

respectively.

When using the boosted decision tree to perform an analysis, each event fed in

to the boosted decision tree is evaluated by every tree in the forest, and the final

output of the boosted decision tree is given by the sum of each of the outputs of the

individual decision trees, weighted by a “boost-weight” that is associated with each

tree. The expression for the output, which is also described in Section B.1, is:

yBDT(x) =
∑

i∈forest

ln(αi) · hi(x), (9.1)

where x is the tuple of input variables, and hi(x) and αi are the output and weight of

the individual trees, respectively. The boost-weight of an individual tree is determined

during the training phase, and essentially measures the tree’s overall performance in
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separating signal from background. It is described in detail in Section B.3.
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Figure 9.11: One of the decision trees from the boosted decision tree forest that was used
in this analysis. The variable and cut value used at each branching node is
depicted, along with an interpretation of the cut. N is the total weighted
number of events at a given node. P is the signal purity of the node, defined
as P = S/(S+B), where S is the weighted number of true signal events at the
node and B is the weighted number of true background events at the node.
Signal and Background indicate a terminal signal-like and background-like
leaf node, respectively.

The goal of the testing stage was to adjust the tuning parameters of the boosted

decision tree to produce output for the signal and background Monte Carlo that

satisfied certain criteria that were decided upon beforehand. The criteria chosen for

this analysis required that the output distributions have the following qualities: (1)

good overall separation between signal and background; (2) overall smoothness with

no large and/or irregularly exaggerated jaggedness in either the signal or background
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distribution; (3) relative smoothness in the background and signal distributions near

the signal-like tail region of the background distribution. The emphasis on the signal-

like tail region of the background is due to the fact that this is approximately where

the final cut will be placed, as this search was intended to be a zero background

search. Thus it was considered desirable to have well-behaved output distributions

in that region in order to reduce systematic errors that could arise from fluctuations

in the data.

The tuning parameters were adjusted through an iterative trial process until the

criteria listed above were met. The three parameters which were tuned in the process

were the total number of trees in the forest, the minimum number of events in a

terminal node, and the pruning strength. The final configuration of the boosted

decision tree is presented in Table 9.8.

Number of trees: 500
Min. events per leaf: 1

Boost type: Ada-Boost
Separation type: Gini Index
Number of bins: 50

Pruning method: Cost Complexity
Pruning strength: 25.0

Table 9.8: Configuration of the boosted decision tree.

The outputs of the training, testing, and analysis stages are compared in Fig. 9.12.

The shape difference between the training and testing samples indicated that the

boosted decision tree was slightly overtrained on the training sample, meaning that

the separation between the training signal and background distributions was some-

what better than that of the testing distributions. This does not indicate that the

boosted decision tree would have inconsistent results from sample to sample, how-

ever, which is the primary concern regarding potential bias in the performance. A
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very large degree of overtraining would indicate that the performance of the boosted

decision tree will not be optimal when applied to samples that were not used in the

training itself [74].

To check for consistent performance of the boosted decision tree on samples that

were not used in the training process, the output of the testing sample and the output

of the analysis sample were compared. Figure 9.12 demonstrates that the boosted

decision tree performance was consistent across statistically similar samples of events.
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Figure 9.12: Comparisons of training, testing, and analysis outputs from the boosted de-
cision tree. Left: boosted decision tree output for signal and background
training samples (markers) and testing samples (hatched). Disagreement in-
dicates slight (though non-problematic) overtraining of the boosted decision
tree. Right: Boosted decision tree output for analysis samples (markers) and
testing samples (hatched). Agreement indicates consistent performance of
the boosted decision tree on statistically similar datasets.

9.4.3 Final Cut Placement for Boosted Decision Tree Output

The final stage of the multi-variate analysis was to assess the boosted decision

tree output for the analysis sample of the signal and background Monte Carlo, and

to choose the placement of the final cut that would be used to determine whether or

not there was evidence for any signal events in the actual SK-I dataset.

The starting point for determining the final cut placement was to determine the

point which maximized the significance, defined as S/
√

S + B, where S is the signal
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efficiency and B is the background efficiency, for 1 signal event over 26 background

events using the testing Monte Carlo samples, which would correspond to seeing 1

signal event in the 27 SK-I data events that passed the precuts. The significance

curve for these parameters is shown in Fig. 9.13. The significance was found to be

maximal for a cut placed at about 0.12.
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Figure 9.13: Significance curve for the boosted decision tree output determined by testing
Monte Carlo for 1 signal event over 26 background events. The significance
is defined as S/

√
S + B. The maximum significance is attained for a cut

placed at about 0.12.

The signal efficiency and expected background values corresponding to a cut

placed at 0.12 were calculated using the analysis Monte Carlo sample. The cut value

was then incremented by steps of 0.01, the chosen granularity for the final cut place-

ment. Table 9.9 shows the signal efficiency and expected background for a number of

potential cut placements that were considered. The final cut placement was chosen

to be 0.12, yielding a signal efficiency of 12.6% and an expected background of 0.28

events. It was decided to move the cut no lower than this due to the goal of having
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zero background in the final analysis of the data. An expected background of 0.3

events or higher was deemed to be too large, given that the systematic errors on the

background estimate were expected to be somewhat large.

Cut Placement Signal Efficiency Expected Background
0.10 14.4% 0.51 evt./1489.2 days
0.11 13.5% 0.38 evt./1489.2 days
0.12 12.6% 0.28 evt./1489.2 days
0.13 11.5% 0.19 evt./1489.2 days
0.14 10.4% 0.16 evt./1489.2 days

Table 9.9: Signal efficiency and expected background for different final cut placements on
the boosted decision tree output. Figures were calculated using the analysis
Monte Carlo sample. 0.12 was chosen for the final cut placement to be used in
the analysis of the data.

9.4.4 Boosted Decision Tree Monte Carlo Results

Figure 9.14 shows the boosted decision tree output of the atmospheric neutrino

and p p → K+ K+ analysis Monte Carlo samples. The results are color-coded by

event category. Figure 9.15 shows an enlarged view of the Monte Carlo output in

the region near the final cut, placed at 0.12. Events in the data with a final output

greater than the cut value would be considered dinucleon decay signal candidates.

The color legend in both figures list the event categories by decreasing abundance in

each respective plot.

The final signal efficiency and expected background after applying the boosted

decision tree cut are shown in Table 9.10. The final total efficiency for the signal

after applying the boosted decision tree cut was 12.6%. The final total expected

background was 0.28 events after normalizing to the SK-I livetime.
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Figure 9.14: Boosted decision tree output for the Monte Carlo. Left: Atmospheric neu-
trino Monte Carlo. Right: p p → K+ K+ Monte Carlo. The legend lists
the event categories by decreasing abundance in each respective plot. The
vertical line indicates the final cut, placed at 0.12.
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Figure 9.15: Boosted decision tree output for the Monte Carlo in the region near the final
cut. Left: Atmospheric neutrino Monte Carlo. Right: p p → K+ K+ Monte
Carlo. The vertical line indicates the final cut, placed at 0.12.

9.4.5 Final Background Characteristics

Table 9.11 shows the surviving background Monte Carlo events after applying

the boosted decision tree cut, broken down by neutrino flavor and weak current type.

Charged current (CC) and neutral current (NC) muon neutrino interactions dominate

the background after the precuts.

Table 9.12 shows the specific neutrino interaction types of the final surviving

background Monte Carlo. Single-pion and multi-pion production from delta resonance
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Event Category
p p → K+ K+ M.C. Atmospheric ν M.C.

efficiency (%) events / SK-I livetime
K+ K+ µ+ 5.0 0.07
K+ µ+ µ+ 1.8 0.08
K+ K+ γ 0.8 0.02
K+ K+ µ+ µ+ 2.5 0.00
K+ K+ γ γ 0.3 0.00
K+ µ+ γ γ 1.0 0.08
K+ K+ µ+ γ 1.0 0.03
K+ K+ µ+ γ γ 0.2 0.00
total 12.6 0.28

Table 9.10: Signal and background after applying the boosted decision tree cut.

ν Mode Events/200 Years Events/1489.2 Days %
CC νµ 8.73 0.18 64
NC νµ 3.00 0.06 22
CC νe 2.00 0.04 15
NC νe 0.00 0.00 0
total 13.73 0.28 100

Table 9.11: Final remaining background Monte Carlo events sorted by neutrino flavor
and weak current type. CC: Charged Current; NC: Neutral Current. The
first numerical column shows the unscaled number of events from the 200
year analysis sample. The second numerical column shows the number of
events scaled to the SK-I livetime.

are the dominant sources of background after the final cut on the boosted decision

tree output.

Table 9.13 shows the breakdown of the true particle types (PID) for each of the

different ring classifications from the final background sample. A plurality of the kaon

candidate rings were created by muons. The rest were mostly created by charged

pions and protons. Half of the muon candidate rings were created by charged pions.

A majority of the gamma candidate rings were created by actual gammas.
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Interaction Events/200 Years Events/1489.2 Days %
CC multi-pion production 5.34 0.11 38.9
CC single pion delta resonance 4.89 0.10 35.6
NC single pion delta resonance 2.00 0.04 14.6
NC diffractive pion production 1.00 0.02 7.3
CC quasi-elastic 0.50 0.01 3.6
NC multi-pion production 0.00 0.00 0.0
CC diffractive pion production 0.00 0.00 0.0
NC elastic 0.00 0.00 0.0
CC coherent pion production 0.00 0.00 0.0
NC coherent pion production 0.00 0.00 0.0
total 13.73 0.28 100

Table 9.12: Final remaining background Monte Carlo events sorted by neutrino interac-
tion type. CC: Charged Current; NC: Neutral Current. The first numerical
column shows the unscaled number of events from the 200 year analysis sam-
ple. The second numerical column shows the number of events scaled to the
SK-I livetime.

True PID K+ Candidates µ+ Candidates γ Candidates
p 5 5 0
π± 8 11 1
µ± 12 2 0
e± 1 1 3
γ 1 3 6
total 27 22 10

Table 9.13: True PID of all rings in final background sample.

9.4.6 Final Signal Characteristics

Table 9.14 shows the breakdown of the true particle types (PID) for each of the

different ring classifications from the final signal sample. The kaon candidates had

a purity of 92.6%, the muon candidates had a purity of 81.8%, and the gamma

candidates had a purity of 67.4%. These high purities show that the classification

algorithm performed quite well on the dinucleon decay signal Monte Carlo events.

Table 9.15 shows the purity of each of the event categories for the final signal
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True PID K+ Candidates µ+ Candidates γ Candidates
K+ 4273 276 27
π+ 57 128 32
µ+ 224 2668 200
e+ 19 51 62
γ 42 138 663
total 4615 3261 984
purity 92.6% 81.8% 67.4%

Table 9.14: True PID of all rings in final signal sample.

sample. The purity is defined here as the fraction of events of a given category in

which every ring in the event was correctly classified. The final entry represents the

total purity of the final signal sample across all categories. The K+ K+ µ+ and K+

K+ µ+ µ+ categories both had very high purity; these represent the majority of the

events in the final signal sample. The good performance in these categories is due

to the two found kaons. The rest of the categories had purities ranging from 30-

50%. The reason that these categories had somewhat worse purities than K+ K+ µ+

and K+ K+ µ+ µ+ is that they either were missing the second kaon ring, or because

they contained gamma candidate rings, which have a worse purity than either kaon

or muon candidate rings. Having correctly classified every ring in about two-thirds

of the final signal sample is here considered a very good performance benchmark,

given the highly complicated nature of the signal events and the ring classification

algorithm that it entailed.

9.5 Systematic Uncertainties

The systematic uncertainties were broken down into four main categories: Monte

Carlo simulation, detector knowledge, event reconstruction, and boosted decision tree
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Event Category Purity
K+ K+ µ+ 84.7%
K+ µ+ µ+ 43.5%
K+ K+ γ 39.6%
K+ K+ µ+ µ+ 81.7%
K+ K+ γ γ 41.8%
K+ µ+ γ γ 31.1%
K+ K+ µ+ γ 32.5%
K+ K+ µ+ γ γ 48.7%
overall 65.5%

Table 9.15: Event categorization purity for the final signal sample.

related uncertainties. The first category, Monte Carlo simulation, had a unique set

of uncertainties for the signal efficiency and expected background. The latter three

categories were common to both signal and background.

9.5.1 Monte Carlo Simulation Uncertainties

Signal

The four main sources of uncertainty from the Monte Carlo for the signal ef-

ficiency were from hadronic interactions of the kaons, the simulation of correlated

decay events, the Fermi momentum of the parent nucleons, and the branching ratios

of the kaon decay channels.

Based on cross-section comparisons between the dinucleon decay Monte Carlo and

those compiled by the PDG [12], the systematic uncertainty for hadronic interactions

of the kaons was estimated to be 25%. Figure 5.4 shows the cross-sections from the

p p → K+ K+ Monte Carlo overlaid on the experimental data points taken from the

PDG.

The effect of correlated decay is described in Section 5.1. A 100% systematic
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uncertainty was taken for this effect. The uncertainty in the Fermi momentum was

taken to be 20%, following [4]. The uncertainty on the kaon branching ratios was

assumed to be negligibly small.

Background

For the atmospheric neutrino background, there were also four main systematic

ucertainty terms taken into account. All four of these effects were taken to have a

direct effect on the final background uncertainty. The neutrino flux was taken to have

an 8% uncertainty, the neutrino interaction cross-section 15%, nuclear effects were

taken to have a 20% uncertainty, and pion propagation simulation uncertainties, which

are the dominant source overall in the background estimate uncertainty, were taken

to have a 50% uncertainty. All of these uncertainties follow the general perscriptions

laid out in previous Super-Kamiokande studies [4, 57].

9.5.2 Detector Related Uncertainties

There were two main systematic uncertainties related to detector knowledge: the

uncertainty in the fiducial volume and the energy scale.

A 4.4% uncertainty in the fidcucial volume was taken for signal and background,

based on comparisons between the data and atmospheric Monte Carlo, which cor-

responded with a shift in the fiducial volume boundary cut of 200 cm (+22.2 cm or

-21.5 cm) from the inner wall of the detector.

The energy scale uncertainty was also estimated based on comparisons between

data and atmospheric neutrino Monte Carlo, and was estimated to be at the 1.1%

level. A corresponding 1.1% shift in the POTOT precut (Section 9.3) was used to

estimate the overall uncertainty in the signal and background based on the energy
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scale uncertainty.

9.5.3 Reconstruction Uncertainties

Six major sources of uncertainty were identified from the event reconstruction

process: showering likelihood, ring counting, Cherenkov angle, vertex position, decay

electron counting, and ring momentum reconstruction. The estimated size of the

uncertainties for each of these sources is summarized in Table 9.16. The same values

were used for both signal and background uncertainty estimates.

Sytematic Source Uncertainty
showering likelihood 5.8% (0.2)
ring counting < 1%
Cherenkov angle 0.7◦

vertex position 30 cm
decay-e counting ∼ 1%
ring momentum 1.2%

Table 9.16: Systematic uncertainties in event reconstruction variables.

Each of the respective variables was shifted by its corresponding uncertainty, and

the entire search process was re-run on the shifted Monte Carlo, from the ring clas-

sification to the boosted decision tree. The boosted decision tree was not re-trained

for each shifted sample; the original boosted decision tree trained on the unshifted

Monte Carlo was used to estimate all uncertainties.

9.5.4 Search Method Uncertainties

Finally, to attempt to estimate the systematic uncertainties introduced by the

boosted decision tree, several techniques were used, and the results of each were

averaged independently for the signal and background. The first technique was to
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simply shift the final cut placement up and down by an increment of 0.01. This

was the granularity used when choosing the original cut placement, as described in

Section 9.4.3.

The second technique was to assess the final signal efficiency and expected back-

ground after applying the trained boosted decision tree to the testing Monte Carlo

sample (see Section 9.4.2), and then the combined testing and analysis samples, si-

multaneously.

The results of these tests are summarized in Table 9.17. The average uncertainty

of the two techniques was taken as the final uncertainty of the boosted decision tree

performance.

Cut Variation Sample Variation Average
p p → K+ K+ 8.1% 1.4% 4.7%
Atm. ν 33.9% 26.8% 30.4%

Table 9.17: Systematic uncertainty of boosted decision tree performance.

9.5.5 Total Systematic Uncertainty

The final systematic uncertainties are listed in Table 9.18. The total uncertainty

on the signal detection efficiency was calculated to be 25.2%. The total uncertainty

on the expected background was calculated to be 68.1%. The leading sources of

uncertainty for both the signal efficiency and the expected background came from the

respective Monte Carlo simulations. For the signal, the uncertainty in the simulation

of the Fermi momentum of the original nucleons dominated. For the background, the

uncertainty in the simulation of the propagation of pions was the dominant source.
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Systematic Source σ[ǫsig] σ[Nbkg]
p p → K+ K+ Monte Carlo
hadronic interactions 1.3%
correlated decay 2.5%
Fermi momentum 24.1%
K+ decay B.R. < 1%
Atm. ν Monte Carlo
ν flux 8.0%
ν cross-section 15.0%
π nuclear effect 20.0%
pion propagation 50.0%
Detector Knowledge
fiducial volume 2.2% 5.4%
energy scale < 1% < 1%
Event Reconstruction
showering likelihood 2.4% 14.3%
ring counting < 1% < 1%
Cherenkov angle 1.0% 3.6%
vertex position 3.9% 16.1%
decay-e counting < 1% < 1%
ring momentum 0.7% 5.4%
Boosted Decision tree
sample bias 4.7% 30.4%
total 25.2% 68.1%

Table 9.18: Systematic uncertainties in event reconstruction variables.
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Results and Conclusions

The 1489.2 days of fully contained SK-I data, corresponding to 91.7 kiloton · years

of exposure, were searched for evidence of 16O(pp) → 14C K+ K+. Twenty-seven

events in the data passed the precuts described in Section 9.3. Figure 10.1 shows the

final results of the search. No signal candidate events were found in the data, defined

by the final cut on the boosted decision tree output at 0.12. The distribution of the

boosted decision tree output for the SK-I data was found to be consistent with the

atmospheric neutrino Monte Carlo, representing the background of the search.

The amount of background expected to pass the final cut was 0.28 ± 0.19 events

after normalizing to the 1489.2 days of SK-I livetime. The p p → K+ K+ signal

detection efficiency was estimated to be 12.6% ± 3.2%.

Following the conventions described in Appendix C.1, the results of the search

were used to calculate a lower limit on the partial lifetime of the dinucleon decay

channel p p → K+ K+:

τ

B.R. p p→K+ K+

≥ 1.7 × 1032 years. (10.1)

This number represents the lifetime limit per 16O nucleus at a 90% confidence level.
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Figure 10.1: Final output of boosted decision tree. SK-I data is overlaid on analysis Monte
Carlo samples of the dinucleon decay signal and the atmospheric neutrino
background. The final cut placement is at 0.12; events with an output above
this threshold are considered signal candidates. No signal candidate events
were found in the data.

The limit presented in this dissertation is the result of the first direct experimental

search for dinucleon decay into kaons. This limit is two orders of magnitude better

than the dinucleon decay limits for pion and lepton modes set by the Frejus exper-

iment [12, 15], and seven orders of magnitude better than the limits for neutrino

modes and invisible modes set by Frejus, DAMA, and the BOREXINO CTF [12–15].

Using the lower lifetime limit from the search, one can then calculate the corre-

sponding upper limit on the magnitude of the ∆B = 1 R−Parity violating SUSY

parameter, λ′′
uds. The details of the calculation are described in Appendix C.2. The

upper limit on the λ′′
uds parameter based on the first experimental lower lifetime limit

for the dinucleon decay channel p p → K+ K+ was calculated to be:

|λ′′
uds| <

(

0.64

τ [years]

)1/4

= 7.8 × 10−9. (10.2)
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This new result is more restrictive than the limit of ∼ 10−7 estimated by Goity and

Sher [22] based on a typical nuclear matter lifetime limit of ∼ 1030 years taken from

the limits observed in searches for single nucleon decay and the searches for dinucleon

decay into pions or leptons performed by the Frejus collaboration.

According to the literature [20–22], a search for dinucleon decay into kaons should

provide the best currently accessible experimental limit on λ′′
uds. Because λ′′

uds scales

with τ−1/4, and τ ∝ ǫ · A, where ǫ is the signal detection efficiency and A is the

exposure in kiloton · years, one would need to increase ǫ · A by a factor of 10,000 to

improve the limit calculated in this analysis by a single order of magnitude. Thus,

adding the SK-II and SK-III datasets to the search would do little to improve the

limit obtained here from the SK-I dataset alone.

In regard to the ability of future experiments to improve the λ′′
uds limit presented

here by an order of magnitude, it seems that it would be very difficult to accomplish

using conventional nucleon decay detection methods, though perhaps not strictly

impossible. Certainly, the target mass of the detector (or set of detectors) would

have to be in the range of megatons. Until such a detector exists, however, the new

limit on λ′′
uds presented in this dissertation is expected to remain the best limit on

record.



Appendix A

MVFIT Resolutions

The resolution for each reconstructed variable was obtained separately for the

p p → K+ K+ Monte Carlo and the atmospheric ν Monte Carlo. Three of the precuts

listed in Section 9.3 were applied to both Monte Carlo samples before calculating the

resolutions:

• 1000 < potot < 11000, where potot is the total amount of light seen in the ID

in units of p.e.

• 3 ≤ nring ≤ 5, where nring is the number of found rings in the event

• wall > 200 cm, where wall is the distance from the event vertex to the nearest

wall; this is the fiducial volume (FV) cut

A correction of +4.5%, +0.5%, and +5.0% was applied to the kaon-like, muon-like,

and gamma-like reconstructed momenta, respectively. These corrections compensate

for the bias arising from the RTOT-to-momentum look-up tables used in the mo-

mentum reconstruction process (see Section 7.1.4), which were generated for RTOT

values corresponding to a 70◦ half-opening angle. The RTOT value used in MVFIT
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is instead calculated using the unmasked window, defined as the ring’s Cherenkov

angle +10◦ (see Section 7.2).

A correction of -5 cm and -40 cm was also applied to the reconstructed vertex along

the ring direction for muon-like and gamma-like vertices, respectively. This was again

to compensate for bias introduced by using reconstruction algorithms that were not

originally developed to perform with the light masking techniques used by MVFIT.

The momentum and vertex correction were both applied before generating the

resolution tables and plots in this appendix (but were themselves based on the same

tables calculated before the corrections were applied). The directional, vertex, and

perpendicular (⊥) vertex resolutions all represent the minimal point that includes

68% of the entries. The mean and variance for the momentum and parallel (||) vertex

resolutions were calculated using Gaussian fits.

In all of the plots in this chapter, the solid lines represent the p p → K+ K+

Monte Carlo and the dashed lines represent the atmospheric neutrino Monte Carlo.

The vertical lines represent the 68% resolution point. In all plots, “∆ variable name”

indicates the reconstructed value of the variable minus the true value of the variable.

∆ vertex || indicates the difference between the reconstructed and true vertex along

the direction parallel to the true direction of the particle. Likewise, ∆ vertex ⊥

indicates the difference between the reconstructed and true vertex in the plane per-

pendicular to the true direction of the particle.
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A.1 Charged Kaon Ring Resolutions

The MVFIT reconstructed variable resolutions for rings created by charged kaons

are listed in Table A.1, and shown in Fig. A.1. 409 kaon rings from the atmospheric

neutrino Monte Carlo and 46,097 kaon rings from the p p → K+ K+ Monte Carlo

were analyzed.

K± rings Atm. ν p p → K+ K+

direction
resolution 4◦ 4◦

momentum
mean -12% 0%
variance 11% 6%
vertex
resolution 160 cm 130 cm
⊥ resolution 20 cm 40 cm
|| mean -68 cm -27 cm
|| variance 114 cm 88 cm

Table A.1: MVFIT reconstructed resolutions for true charged kaon rings. ⊥ indicates
the direction perpendicular to the ring direction, and || indicates the direction
parallel to the ring direction.
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Figure A.1: MVFIT reconstructed variable resolutions for charged kaons. In order from
left to right, top to bottom: direction, momentum, vertex, vertex perpendic-
ular to ring direction, vertex parallel to ring direction.
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A.2 Muon Ring Resolutions

The MVFIT reconstructed variable resolutions for rings created by muons are

listed in Table A.2, and shown in Fig. A.2. 25,357 muon rings from the atmospheric

neutrino Monte Carlo and 33,775 muon rings from the p p → K+ K+ Monte Carlo

were analyzed.

µ± rings Atm. ν p p → K+ K+

direction
resolution 3◦ 6◦

momentum
mean +2% -1%
variance 2% 9%
vertex
resolution 35 cm 140 cm
⊥ resolution 15 cm 65 cm
|| mean +4 cm 0 cm
|| variance 23 cm 45 cm

Table A.2: MVFIT reconstructed resolutions for true muon rings. ⊥ indicates the direc-
tion perpendicular to the ring direction, and || indicates the direction parallel
to the ring direction.
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Figure A.2: MVFIT reconstructed variable resolutions for muons. In order from left to
right, top to bottom: direction, momentum, vertex, vertex perpendicular to
ring direction, vertex parallel to ring direction.
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A.3 Gamma Ring Resolutions

The MVFIT reconstructed variable resolutions for rings created by gammas or

electrons are listed in Table A.3, and shown in Fig. A.3. 168,935 gamma and electron

rings from the atmospheric neutrino Monte Carlo and 56,972 gamma and electron

rings from the p p → K+ K+ Monte Carlo were analyzed.

γ, e± rings Atm. ν p p → K+ K+

direction
resolution 6◦ 8◦

momentum
mean -5% +5%
variance 25% 29%
vertex
resolution 110 cm 140 cm
⊥ resolution 20 cm 40 cm
|| mean +67 cm +63 cm
|| variance 68 cm 79 cm

Table A.3: MVFIT reconstructed resolutions for true gamma and electron rings. ⊥ in-
dicates the direction perpendicular to the ring direction, and || indicates the
direction parallel to the ring direction.
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Figure A.3: MVFIT reconstructed variable resolutions for gammas and electrons. In or-
der from left to right, top to bottom: direction, momentum, vertex, vertex
perpendicular to ring direction, vertex parallel to ring direction.



Appendix B

Boosted Decision Tree

The ROOT-based TMVA [74] multivariate analysis software package was used to

implement the boosted decision tree in this analysis.

A decision tree is a classifier with a top-down binary tree structure. Starting with

the first node in the tree, all variables are scanned and a one-dimensional cut is placed

on the variable which allows for the maximal separation of signal and background.

The events are then split into two groups, one passing the cut and traveling down the

“signal-like” branch to one node, and the other failing the cut and traveling down the

“background-like” branch to another node. The same process is then repeated for

each of the two new daughter nodes. This pattern is repeated until a certain stopping

criterion is reached, at which point a node is no longer split into two branches, but is

instead declared either a signal-like or background-like terminal leaf node, depending

on the makeup of the events which it contains. The process of creating of a tree is

synonymous with training a tree.

Boosting refers to the process of training a classifier using a reweighted, or “boosted,”

training event sample that was the output of a previously trained classifier. In the

case of a boosted decision tree, the output of tree n is reweighted based on the per-
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formance of that tree. Then, those boosted events are used to create tree n+1. Note

that the output of tree n includes all of the original training events; no events are

thrown out or go unused in any tree created during the training process.

The forest is the name given to the full collection of decision trees that are created

during the training process. The forest itself is simply referred to as the boosted

decision tree, and its output is a weighted majority of the decision trees from which

it is comprised.

B.1 Final Output

The calculation for the final boosted decision tree output, yBDT(x), is shown below:

yBDT(x) =
∑

i∈forest

ln(αi) · hi(x) (B.1)

where x is the tuple of input variables, and hi(x) and αi are the output and weight

of the individual trees, respectively. The calculation of the weight for a given tree is

described in Section B.3.

B.2 Separation Index

The branch node splitting is a one-dimensional cut on a single variable from the

tuple of input variables. The binning for the variables is specified in the boosted

decision tree tuning parameters, and the trial locations for the branching cut lie

between the bins. All options are considered, and the variable and cut position which

maximize the separation index between the current node and those of the hypothetical

daughter nodes are chosen. The hypothetical daughter nodes are weighted by their

relative fraction of events in this calculation.
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The separation index, or Gini index, is defined below, where P is the purity of

the node, N is the number of training events in the node, and Wi is the weight of the

individual events:

P =

∑

S WS
∑

S WS +
∑

B WB
(B.2)

Gini =

(

N
∑

i=1

Wi

)

P · (1 − P ) (B.3)

The quality of separation, Qsep, is maximized at each branching node, and is given

by:

Qsep = Gparent − (Gbkg + Gsig) (B.4)

where Gparent is the Gini index of the parent node, and Gbkg and Gsig are the Gini

indices of the background-like and signal-like daughter nodes, respectively.

B.3 Adaptive Boost Method

The boosting method that was used in this analysis is the adaptive boost method

(“Ada-Boost”). In this method, misclassified events (i.e., signal events which end up

in a background leaf, or vice versa) are given a larger event weight in the training

of the next tree. All of the misclassified events in a single tree are multiplied by a

common boost weight, α, where err is the mis-classification rate of the tree.

α =
1 − err

err
(B.5)
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B.4 Pruning

Pruning is a process by which statistically insignificant nodes are removed from

a tree after it has been grown to maximum size (i.e., all branches have ended in

terminal leaf nodes). In this analysis, the expected error pruning method was used,

which removes all daughter nodes for which the statistical error estimate of the parent

node is smaller than the combined statistical error estimates of the daughter nodes.

Thus a branching node may become a leaf node.

The statistical error estimate of each node, ǫnode, is calculated using the binomial

error, as shown below:

ǫnode = F ·
√

P · (1 − P )

N
(B.6)

where P is the purity of the node, N is the number of training events in the node,

and F is the pruning strength factor. The pruning criterion is then given by:

ǫparent < ǫbkg + ǫsig (B.7)

where ǫparent is the statistical error of the parent node, and ǫbkg and ǫrmsig are the

statistical errors of the background-like and signal-like daughter nodes, respectively.

B.5 Training Distributions

The distributions of each of the input variables used in the training of the boosted

decision tree can be seen in Fig. B.1. See Section 9.4.1 for a complete description of

each of the input variables.
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Figure B.1: Distributions of the input variables used to train the boosted decision tree.
Trivial bins have been truncated to emphasize shape difference in the non-
trivial range. Filled blue histograms indicate the p p → K+ K+ signal Monte
Carlo. Hatched red histograms indicate the atmospheric neutrino background
Monte Carlo.
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Figure B.1: (Continued...) Distributions of the input variables used to train the boosted
decision tree. Trivial bins have been truncated to emphasize shape difference
in the non-trivial range. Filled blue histograms indicate the p p → K+ K+

signal Monte Carlo. Hatched red histograms indicate the atmospheric neu-
trino background Monte Carlo.



171

total_rtot_mag
1000 2000 3000 4000 5000

95
.1

 
 /  

(1
/N

) 
dN

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

total_rtot_mag
1000 2000 3000 4000 5000

95
.1

 
 /  

(1
/N

) 
dN

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

U
/O

­f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: total_rtot_mag

Figure B.1: (Continued...) Distributions of the input variables used to train the boosted
decision tree. Trivial bins have been truncated to emphasize shape difference
in the non-trivial range. Filled blue histograms indicate the p p → K+ K+

signal Monte Carlo. Hatched red histograms indicate the atmospheric neu-
trino background Monte Carlo.

B.6 Variable Ranking

A ranking of the input variables used to train the boosted decision tree can be

estimated by counting how often each is used. Each time a variable is used at a

branching node, it is weighted by the square of the separation gain achieved by the

splitting, as well as the number of events in the node. The variable ranking for this

analysis is shown in Table B.1.

The most important variables, total rtot mag and total rtot dot k, are mea-

sures of the symmetry of the overall light pattern of the event. The dinucleon decay

events have a very high degree of symmetry, largely due to the back-to-back kaons.

The atmospheric neutrino interactions are less likely to create very symmetric distri-

butions of light due to the initial momentum of the incoming neutrino.

The least important variables, rec pi0 mom (the reconstructed π0 momentum)

and k cand cang[1] (the reconstructed Cherenkov angle of the second kaon can-

didate), are both members of collections of variables that describe a pair of clas-
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sified kaon candidates or gamma candidates, respectively. Thus, after the other

variables in their respective collections have already been exploited, there is little

discrimination power left in these two. k cand cang[0] is much more powerful than

k cand cang[1] because every event that enters the boosted decision tree is required

to have at least one kaon candidate, as dictated by the precuts in Section 9.3, whereas

not every event has a second kaon candidate. In fact, very few background events

have two kaon candidates.
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Rank Variable Name Importance ×102

1 total rtot mag 7.0
2 total rtot dot k 5.4
3 g cand impact[0] 5.0
4 rec pi0 mass 4.7
5 mu cand mom[1] 4.7
6 off vtx sep 4.6
7 dcy e vtxsep 4.6
8 k cand mom[0] 4.7
9 k cand cang[0] 4.5

10 mu cand mom[0] 4.1
11 k cand mom[1] 3.9
12 g cand cang[0] 3.6
13 mu cand cang[0] 3.5
14 g cand vtxsep 3.3
15 g cand totmom 2.7
16 decay vtxsep 2.6
17 g cand show[1] 2.5
18 rec dinuc mass 2.4
19 k cand vtxsep 2.4
20 k cand show[1] 2.3
21 agood 2.2
22 k cand show[0] 2.1
23 g cand cang[1] 2.0
24 g cand mom[0] 1.8
25 mu cand impact[0] 1.7
26 rec pi0 impact 1.5
27 g cand show[0] 1.4
28 mu cand show[0] 1.3
29 mu cand cang[1] 1.1
30 g cand impact[1] 1.1
31 rec dinuc mom 1.1
32 mu cand impact[1] 0.9
33 mu cand show[1] 0.9
34 g cand mom[1] 0.8
35 n dcy e 0.7
36 rec pi0 mom 0.6
37 k cand cang[1] 0.1

Table B.1: Input variables for the boosted decision tree.



Appendix C

Limit Calculations

C.1 Lower Lifetime Limit on Decay Mode

The following expression for the probability of detecting n signal events is obtained

by simple Poisson statistics:

P(n|Γλǫb) =
e−(Γλǫ+b) (Γλǫ + b)n

n!
, (C.1)

where Γ is the decay rate, λ is the exposure, ǫ is the detection efficiency, b is the

amount of background, and P(A|B) is the conditional probability of A, given that

proposition B is true.

To be able to take into account the systematic errors in the limit calculation,

Bayes’ Theorem is used. Applying Bayes’ Theorem to the Poisson function gives the

following:

P(Γλǫb|n) =
1

A
P(n|Γλǫb)P(Γλǫb), (C.2)

where A is a normalization factor.

As the decay rate, detection efficiency, exposure, and background are all indepen-

174
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dent variables, the above expression can be rewritten to give:

P(Γλǫb|n) =
1

A
P(n|Γλǫb)P(Γ)P(ǫ)P(λ)P(b). (C.3)

Now the probability density function of Γ can be defined as:

P(Γ|n) =

∫ ∫ ∫

P(Γǫλb|n)dǫdλdb, (C.4)

which can be re-expressed as:

P(Γ|n) =
1

A

∫ ∫ ∫

e−(Γλǫ+b) (Γλǫ + b)n

n!
P(Γ)P(ǫ)P(λ)P(b)dǫdλdb. (C.5)

The normalization factor A is given by:

A =

∫ ∞

0

P(Γ|n)dΓ. (C.6)

The systematic uncertainties on the detection efficiency, exposure, and background

can now be incorporated into the prior distributions, P(λ), P(ǫ) and P(b), the shapes

of which are assumed to be truncated Gaussian distributions:
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P(λ) ∝











exp
(

− (λ−λ0)2

2σ2
λ

)

(λ > 0)

0 (λ ≤ 0)
, (C.7)

P(ǫ) ∝











exp
(

− (ǫ−ǫ0)2

2σ2
ǫ

)

(ǫ > 0)

0 (ǫ ≤ 0)
, (C.8)

P(b) ∝











exp
(

− (b−b0)2

2σ2
b

)

(b > 0)

0 (b ≤ 0)
. (C.9)

where λ0, ǫ0, and b0 are the estimations of the efficiency, exposure, and background,

and σλ, σǫ, and σb are their respective systematic uncertainties.

For asymmetric systematic errors, the prior distribution is defined as:

P(α) ∝























exp
(

− (α−α0)2

2σ2
α+

)

(α > α0)

exp
(

− (α−α0)2

2σ2
α−

)

(0 < α ≤ α0)

0 (α ≤ 0)

, (C.10)

where α is the quantity described by the prior, and σα+ and σα− are its corresponding

positive and negative systematic uncertainties.

Because the expected background in this study is near zero, the statistical error of

the background estimation is taken into account by treating the prior as a convolution

of a Poisson and a Gaussian distribution:

P(b) =

∫ ∞

0

e−bMC (bMC)nb

nb!
exp

(

−(bC − bMC)2

2σ2
b

)

dbMC, (C.11)

where nb is the number of background events in the unnormalized Monte Carlo, bMC

is the number of true background events in the livetime normalized Monte Carlo, and

C is the oversampling factor of the Monte Carlo.
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The prior distribution of the decay rate, Γ, is taken to be uniform from 0 to a

cutoff value:

P(Γ) =











1 (0 < Γ < Γcut)

0 (Γ ≤ 0 or Γ ≥ Γcut)
, (C.12)

where the cutoff value, Γcut, is the upper limit of the decay rate for the calculation

of the normalization factor A needed to avoid divergence. Γcut is set to 10−31years−1,

which should be sufficiently large for this study.

The confidence level (CL) can be calculated by integrating the probability density

function:

CL =

∫ Γlimit

0

P(Γ|n)dΓ. (C.13)

And finally, after setting the confidence level to the desired value and solving the

above equation for Γlimit, one can obtain an expression for the lower lifetime limit:

τlimit = 1/Γlimit. (C.14)

C.2 Upper Limit on R-Parity Violating Parameter

Fermi’s Golden Rule gives the expression for the average rate of dinucleon decay

Γ̄ as:

Γ̄ =
1

2π3ρN

∫

d3k1 d3k2ρ(k1)ρ(k2)vrel(1 − v1 · v2)σtot(NN → X), (C.15)

where ρN is the average nucleon density, ki is the momentum of the ith nucleon, ρ(ki)
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is the density in momentum space of the ith nucleon, vrel is the relative velocity of

the nucleons, vi is the velocity vector of the ith nucleon (taken to be small), and σtot

is the total cross-section for the decay. The cross-section can be approximated by:

σtot(NN → X) ∼ ρN
128πα2

s |λ′′
uds|4R10

vrelM2
N

, (C.16)

where αs is the strong coupling, λ′′
uds is the R−Parity prohibited SUSY coupling

constant, MN is the nucleon mass, and R is the ratio between the hadronic and SUSY

scales, given by:

R =
Λ̃

(Mg̃M4
q̃)

1/5
, (C.17)

where Λ̃ is the QCD scale, Mg̃ is the gluino mass, Mq̃ is the squark mass.

The partial lifetime τ is simply the inverse of the decay rate:

τ =
1

Γ̄
∼ M2

N

ρN128πα2
s |λ′′

uds|4
R−10. (C.18)

Here it clearly shown that the lifetime scales with |λ′′
uds|−4.

Taking ρN = 0.25 fm−3, αs ∼ 0.12, and MN = 0.94 GeV/c2, and assuming that τ

represents an upper limit on the decay process lifetime gives the upper limit on λ′′
uds

as:

|λ′′
uds| <

(

1.65 × 10−30

τ [years]
R−10

)1/4

. (C.19)

If R is taken to be ∼ 1.1× 10−3, as per Goity and Sher [22], then the upper limit

on λ′′
uds as a function of the lower lifetime limit on dinucleon decay into kaons is given

by:



179

|λ′′
uds| <

(

0.64

τ [years]

)1/4

. (C.20)
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